Читаем Пятьсот двадцать головоломок полностью

— Сведений об этом не сохранилось, — ответил полковник. — Нам не известно также ни того, зачем он делил поле на 4 части, ни того, деревянными или железными были изгороди, ни того, пастбище или пашню представляло собой поле. Я не могу даже назвать имя этого человека, не то что сказать, каков цвет его волос. Можно показать, что для решения головоломки все эти сведения не существенны.

286. Квадратура круга. Задача о квадратуре круга сводится к отысканию отношения диаметра к длине окружности. Его нельзя найти с абсолютной, но можно определить с достаточной точностью, чтобы использовать для практических целей.

Точно так же в евклидовой геометрии нельзя построить отрезок прямой, равный длине заданной окружности. Конечно, можно получить достаточно точный результат, поставив на ребро монету и аккуратно прокатив ее по прямой на листе бумаги, но прокатить подобным образом сад круглой формы не так-то просто.

На рисунке изображена ломаная линия, длина которой очень близка к длине изображенной окружности. Горизонтальное звено этой ломаной равно половине длины окружности. Не могли бы вы найти ее с помощью простого метода, в котором использовались бы только карандаш, циркуль и линейка?

287. Автомобиль и круг. Автомобиль едет по кругу. Его колеса, расположенные с внешней стороны круга, движутся вдвое быстрее колес, расположенных с внутренней стороны.

Чему равна длина окружности, которую проходят внешние колеса, если расстояние между колесами на обеих осях 1,5 м?

288. Точильный круг. Три человека купили точильный круг диаметром 20 см. Сколько должен сточить каждый из компаньонов, чтобы круг был разделен поровну, если исключить 4 см диаметра, которые пошли на отверстие? Практическая ценность каждой доли не учитывается, речь идет лишь о равном дележе общей массы круга.

289. Автомобильные колеса. «Видите ли, сэр, — сказал продавец автомобилей, — переднее колесо автомобиля, который вы покупаете, каждые 360 футов делает на 4 оборота больше заднего; но если бы вы уменьшили длину окружности каждого колеса на 3 фута, то переднее колесо на таком же расстоянии делало бы на целых 6 оборотов больше заднего».

Почему покупателю не захотелось, чтобы разность числа оборотов возрастала, нас не касается. Головоломка состоит в том, чтобы найти длину окружности каждого колеса. Это очень легко сделать.

290. Недоразумение с колесом. Вот одно любопытное недоразумение, которое многих крайне озадачивает. Колесо делает полный оборот, пройдя расстояние от А до В. Очевидно, что отрезок АВ равен именно длине окружности колеса. Хотя для произвольного диаметра мы не сможем точно определить эту длину[16], тем не менее мы сумеем найти для нее приближенное значение с достаточной степенью точности. Так, если у нас колесо диаметром 28 см, мы можем умножить диаметр на 22, разделить на 7 и получим искомую длину — 88 см. Это, конечно, слишком грубое приближение, но если мы умножим его на 355 и разделим на 113, то получим 87,9646, что уже лучше, а умножив на 3,1416, мы получим 87,9648 — еще лучшее приближение. Но это между прочим.

Теперь заметим, что внутренний круг (ступица) тоже делает полный оборот вдоль воображаемой пунктирной линии CD, а так как CD равно АВ, длины меньшей и большей окружностей равны! Разумеется, даже младенцу с первого взгляда ясно, что это не верно. И все же, где именно допущена ошибка?

Попытайтесь ее найти. Не может быть и тени сомнения в том, что ступица за один полный оборот проходит расстояние от С до D. Тогда почему же CD не равно длине ее окружности?

291. Знаменитый парадокс. Есть такой вопрос, который задают постоянно, но на который я никогда не слышал удовлетворительного или достаточно убедительного для неискушенного человека ответа. Он состоит в следующем: «Движется ли на ходу верхняя часть велосипедного колеса быстрее нижней?»

Люди, не привыкшие к точному мышлению, неизменно встречают такой вопрос смехом и отвечают: «Разумеется, нет!» Они считают подобный вопрос совершенно нелепым и не достойным даже того, чтобы всерьез над ним призадуматься. «Колесо, —говорят они, — это твердое тело, вращающееся вокруг центральной оси, и если одна из его частей стала бы двигаться быстрее другой, то оно разлетелось бы вдребезги».

Тогда вы обращаете внимание .вашего скептика на проезжающий мимо экипаж и просите его заметить, что спицы в нижней части колеса ясно видны, их даже можно пересчитать; а вот в верхней части они движутся так быстро, что становятся неразличимыми. Движущееся колесо выглядит примерно так, как оно изображено на рисунке. Наш друг вынужден признать очевидное, но поскольку он не может дать объяснение тому, что видит, и не хочет отказываться от своей прежней точки зрения, то, вероятно, ответит: «Ну, возможно, это обман зрения».

Итак, повторяем вопрос: «Движется ли верхняя часть колеса быстрее нижней?»

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг