Читаем Пятьсот двадцать головоломок полностью

300. Начертите прямую. Если нам нужно провести окружность, мы пользуемся циркулем. Однако, если мы хотим провести прямую, нам требуется линейка или какой-нибудь другой предмет с прямолинейным краем. Иными словами, чтобы начертить прямую, мы ищем другую прямую, что эквивалентно тому, как если бы мы использовали монетку, блюдце или другой круглый предмет при проведении окружности. Представьте теперь, что у вас под рукой нет ни прямолинейных предметов, ни даже куска нитки. Не могли бы. вы придумать простой инструмент, который позволял бы проводить прямые линии подобно тому, как проводятся циркулем окружности?

Этот вопрос интересен сам по себе, но не имеет практической ценности. Мы по-прежнему будем пользоваться прямолинейным краем.

301. Начертите эллипс. Я думаю, что многие читатели знакомы со способом построения эллипса, о котором сейчас пойдет речь. Он весьма полезен, если вы хотите сделать рамку для портрета или разбить овальную клумбу. Вы вбиваете два гвоздя или две булавки (а если делаете клумбу — два колышка) и надеваете на них кольцо из нитки или веревки, как показано на рисунке (булавки прикреплены в точках А и В, а кончик карандаша С натягивает петлю из нитки). Если, не ослабляя нитки, вы обведете карандашом вокруг булавок, возвратив его в исходное положение, то кончик карандаша начертит правильный овал.

Некоторые считают, что этот метод не слишком удачен, поскольку начертить эллипс нужного размера удается после нескольких попыток. Однако это заблуждение, и небольшая головоломка состоит в том, чтобы выяснить, чему должны равняться расстояние между булавками и длина нити, чтобы получился эллипс, ну скажем, 12 см в длину и 8 см в ширину.

Не сумеете ли вы найти соответствующее простое правило, позволяющее строить эллипс заранее заданных размеров?

302. Задача каменщика. Некий владелец поместья договорился о строительстве каменной стены. Обнаружилось, что она частично шла по ровному месту, а частично по холму, как показано на рисунке, откуда видно, что расстояние от А до В совпадает с расстоянием от В до С. Подрядчик требовал, чтобы за ту часть стены, которая шла по холму, ему заплатили больше, чем за ту, что проходила по ровному месту, поскольку (так он во всяком случае считал) материалов на нее пошло больше. А заказчик, напротив, считал, что за эту часть стены следует заплатить меньше. Дискуссия была столь оживленной, что дело едва не дошло до суда.

Кто же из них был прав?

303. Ширина реки. Путник подошел к реке в точке А и захотел измерить расстояние до точки В. Как ему проще всего узнать ширину реки, не переплывая ее?

304. Пэт и его свинья. Вы видите на рисунке квадратное поле размером 100 × 100 м. Пэт и свинья, которую он хочет поймать, находятся в противоположных углах на расстоянии 100 м друг от друга. Свинья бежит прямо к калитке в левом верхнем углу. Так как Пэт бегает вдвое быстрее свиньи, то вы, вероятно, решите, что он первым успеет добежать до калитки, чтобы закрыть ее. Но надо знать Пэта: он все время бежит прямо на свинью, описывая при этом кривую линию.

Успеет убежать свинья или Пэт схватит ее? А если схватит, то какое расстояние она пробежит к тому времени?

305. Лестница. Однажды, только зашел разговор о лестнице, которая требовалась для каких-то домашних нужд, как профессор Рэкбрейн внезапно прервал дискуссию, предложив ее участникам маленькую головоломку:

— Лестница стоит вертикально у высокой стены дома. Кто-то оттаскивает ее за нижний конец на 4 м от стены. Оказывается, что верхний конец лестницы опустился на ⅕ её длины.

Чему равна длина лестницы?

306. Громоотвод. Порывом сильного ветра сломало шест громоотвода, так что его верхушка ударилась о землю на расстоянии 20 м от основания шеста. Шест починили, но он вновь сломался под порывом ветра на 5 м ниже, чем раньше, и ударился верхушкой о землю на расстоянии 30 м от основания.

Какова высота шеста? В обоих случаях сломанная часть шеста не отрывалась полностью от остальной его части.

307. Веревка. Веревка спускается с потолка, касаясь пола. Если, сохраняя веревку в натянутом состоянии, коснуться ею стены, конец веревки окажется на расстоянии 3 см от пола. Расстояние же от свободно свисающей веревки до стены 48 см.

Какова длина веревки?

308. Гонец. Гонец (см. рисунок) как можно скорее должен доставить депешу в место, отмеченное палаткой. Расстояния указаны. Известно, что по мягкому торфу (заштрихованная часть) гонец скачет в два раза быстрее, чем по песку.

Не могли бы вы указать гонцу правильный путь? Это как раз одна из тех практических задач, с которыми постоянно сталкиваются в армейской обстановке. От того, какой путь выберет гонец, может зависеть очень многое.

Как бы вы поступили на его месте? Разумеется, торфяник и участок с песчаным грунтом везде имеют одинаковую ширину, так что в этой головоломке нет подвоха.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг