Читаем Пятьсот двадцать головоломок полностью

Читателю, наверное, будет небезынтересно узнать, что миссис Симпер может выбрать любой из 60 маршрутов, если считать разными маршруты, отличающиеся лишь направлением. Между N и О, а также между R и S дорога проходит через тоннель, но, как истая леди, миссис Симпер категорически против езды по тоннелям. Ей хотелось бы также отложить свой визит в D на возможно более поздний срок, чтобы иметь удовольствие встретиться со своей старой приятельницей, живущей в этом городе.

Головоломка состоит в том, чтобы при данных обстоятельствах указать миссис Симпер наилучший маршрут.

416. Шестнадцать прямолинейных участков. Один торговый агент отправился на своем автомобиле из точки, указанной на рисунке, решив проделать путь 76 км, который состоит из 16 прямолинейных участков, ни разу не проехав при этом по одному и тому же участку дважды. Точки обозначают населенные пункты, расположенные через 1 км друг от друга, линии — избранный нашим агентом маршрут. Агент выполнил задуманное, но при этом 6 населенных пунктов остались в стороне от его пути.

Не могли бы вы указать лучший маршрут, при котором, проделав путь 76 км, состоящий из 16 прямых участков, агент посетил бы все пункты, кроме трех?

417. Составьте маршруты. На рисунке изображена схема (весьма упрощенная, разумеется) некоторого района. Кружочками обозначены населенные пункты, а прямыми — соединяющие их дороги.

Не могли бы вы указать, каким образом 5 автомобилистов могут проехать соответственно из А в А, из В в В, из С в С, из D в D и из Е в Е таким образом, чтобы их пути не содержали общих участков и даже не пересекались между собой?

Возьмите карандаш и нарисуйте 5 искомых маршрутов; при этом вам, вероятно, придется немного поломать голову. Разумеется, не важно, в каком из двух городов, обозначенных одинаковыми буквами, начинается, а в каком заканчивается данный маршрут, так как нас интересует лишь вопрос, по каким дорогам он пролегает. Обратите внимание, что если вы отправитесь из А в А, следуя по вертикали вниз, то загородите дорогу всем остальным автомобилям, кроме идущего из В в В, поскольку, конечно, все автомобили обязаны двигаться лишь по тем дорогам, которые изображены на схеме.

418. Мадам. Сколькими различными способами можно прочитать на нашем рисунке слово MADAM? Вы можете двигаться, как вам заблагорассудится, — вверх и вниз, вперед и назад по любой из открытых дорожек. Однако каждая следующая буква должна находиться рядом с предыдущей. Перескакивать через букву запрещается.

419. Треугольники в круге. Вот одна небольшая головоломка, которая потребует от вас терпения и решимости довести дело до конца. Вам предлагается нарисовать круг и треугольники, изображенные на рисунке, с помощью наименьшего числа росчерков[22] карандаша. При этом разрешается дважды проходить по одной и той же линии, а также в любом месте начинать и заканчивать рисунок.

420. Сиамская змея. Условия этой головоломки чрезвычайно просты.

Нарисуйте возможно больший «кусок змеи» (см. рисунок) одной непрерывной линией. Начинайте и кончайте, где хотите, следите лишь за тем, чтобы карандаш не отрывался от бумаги и не проходил дважды по одной и той же линии.

Возможно, какой-нибудь искушенный читатель захочет обойти наши условия, сказав, что один раз он проводит карандаш по данному месту, чертя линию в полширины, а второй раз еще в полширины; но ему следует напомнить, что линия ширины не имеет.

421. Виноградная гроздь. Перед вами довольно грубое изображение виноградной грозди. Головоломка состоит в том, чтобы повторить этот рисунок, не отрывая карандаша от бумаги и не проходя по одному и тому же участку дважды. Возможно, вам придется сделать ряд проб, прежде чем вы натолкнетесь на идею общего метода.

422. «Классики». Мы часто видим, как дети играют в древнюю и повсюду популярную игру «классики». При одной из разновидностей этой игры на земле рисуется изображенная здесь фигура. Мы хотим узнать, можно ли ее нарисовать с помощью одной непрерывной линии. Оказывается, что это возможно.

Сумеет ли читатель нарисовать такую фигуру, не отрывая карандаша от бумаги и не проходя дважды по одной и той же линии? Кривая линия обычно не используется в игре, но мы ее добавили, чтобы сделать головоломку интереснее.

423. Коварная головоломка. Один неразборчивый в средствах делец предложил 100 долларов за правильное решение следующей головоломки. Узник, приговоренный к пожизненному заключению, обратился к королю с просьбой о помиловании. Не желая оказать ему эту милость, но и не ответив отказом, король предложил помиловать узника, если тот, отправляясь из камеры А, побывает в каждой камере тюрьмы и возвратится опять в А, не заходя дважды ни в одну из камер. Сам делец либо не располагал решением головоломки, либо намеревался выйти из положения с помощью какого-нибудь трюка.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг