Читаем Пятьсот двадцать головоломок полностью

3) Делится ли новое частное без остатка на 2? Да.

Двадцать ваших вопросов должны быть все одинаковыми. Запишите справа налево вместо каждого «да» 0, а вместо каждого «нет» 1. Задав 20-й вопрос, вы получите 11001101111111000000. Это не что иное, как наше число 843 712, записанное в двоичной системе. Поскольку справа стоит 6 нулей, то первая справа единица означает 26, следующая 27 и т. д. Сложив все степени двойки от 6-й до 15-й и прибавив к ним 218 и 219, вы получите число 843 712 в десятичной записи.

Если число не слишком велико, например равно 100 000, то достаточно было бы задать 17 вопросов, знай вы только, что частное равно 0. Три последних вопроса добавят лишних 3 нуля в старших разрядах вашего двоичного числа. Во избежание недоразумений лучше с самого начала считать, что 0 делится на 2 без остатка, а частное равно 0.

181. В каждой стопке число карт должно равняться 13 минус достоинство самой нижней из них. Следовательно, 13, умноженное на число стопок, минус сумма нижних карт и плюс число оставшихся карт должно равняться общему числу карт в колоде, то есть 52. Значит, сумма нижних карт равна 13, умноженному на число стопок, минус 52 и плюс число оставшихся карт. Но это то же самое, что 13, умноженное на число стопок без 4, плюс число оставшихся карт. Читатель с алгебраическими наклонностями легко сможет выразить все это на языке привычных символов.

182. У каждого из родителей было по 3 ребенка от первого брака, и.6 детей родилось от второго брака.

183. Нед Смит и его сестра Джейн получили по 3 яблока. Том и Кэт Брауны получили соответственно 8 и 4 яблока, Бил и Энн Джонсы — 3 и 1 яблоко, а Джэку и Мэри Робинсонам досталось 8 и 2 яблока. Всего было роздано 32 яблока.

184. Мать Мэри звали миссис Джонс. Покупки и затраты распределились следующим образом.

Среди дочерей:

Хильда купила 4 м за 16 центов,

Глэдис купила 6 м за 36 центов,

Нора купила 9 м за 81 цент,

Мэри купила 10 м за 1 доллар.

Среди матерей:

Миссис Смит купила 8 м за 64 цента,

миссис Браун купила 12 м за 1,44 доллара,

миссис Уайт купила 18 м за 3,24 доллара,

миссис Джонс купила 20 м за 4 доллара.

185. Чтобы найти число, представляющее собой одновременно и квадрат, и треугольное число, надо решить уравнение Пелля: 8x2 + 1 = y2 Последовательные значения для x равны 1, 6, 35 и т. д., а для y равны 3, 17, 99 и т. д. Ответом служит число 1225 (352), обладающее требуемыми свойствами.

188. Разумеется, можно найти несколько решений данной задачи, но, по-видимому, наименьшими числами будут:

При отыскании общего решения используется тот факт, что любое простое число вида 4m + 1 представляет собой сумму квадратов. Быть может, читателю захочется найти это решение.

187. Ответом служит число 2⅔. Чтобы найти его, требуется составить пропорцию: 5 : 4 = 3⅓ : 2⅔.

188. Ответ имеет вид

Данное число можно умножить на 4 и разделить затем на 5, просто перенеся 2 из начала в конец.

189. Следующие четыре числа, составленные из пяти нечетных цифр, в сумме дают 14: 11, 1, 1, 1.

190. 1) 8 111½; 2) 18⅔; 3) 7 и 1; 4) 1⅕; 5) 8¼: 6) .

191. У Джека было 11 голов скота, у Джима — 7 и у Дана — 21, то есть всего 39 голов скота.

192. «Галочки» можно расставить 9 864 100 способами.

193. Кубы всех чисел от 14 до 25 включительно (всего 12) в сумме дают 97 344 = 3122. Следующим за наименьшим ответом будут пять кубов 25, 26, 27, 28 и 29, сумма которых равна 3152.

194. 73 = 343, 83 = 512, 512 - 343 = 169 = 132.

195. 6423 = 264 609 288; 6413 = 263 374 721 и разность между кубами равна 1 234 567.

196. Ответом служит число 225 625 (квадраты чисел 15 и 25, выписанные подряд один за другим), равное квадрату 475.

197. Ответ: 482, 3362, 6242. Разность этой прогрессии равна 2880. Первое и второе числа в сумме дают 622, первое и третье — 822, а второе и третье — 982.

198. Если прибавить 125 к 100 и 125 к 164, то получатся числа 225 = 152 и 289 = 172.

199. У офицера было 1975 солдат. Когда он образовал каре 44 × 44, то у него осталось 39 лишних солдат, а когда он попытался образовать каре 45 × 45, ему не хватило 50 человек.

200. Вообще мы можем взять числа вида 625m6 и 2 × 625m6. Так, если мы возьмем m = 1, то получим 6252 + 12502 = 1253 и 6253 + 12503 = 46 8752.

201. Молочник должен добавить ¼ л снятого молока.

202. Наименьшее число орехов равно 2179. Лучше всего сначала иметь дело только с первыми двумя случаями и выяснить, что 34 (или 34 плюс любое кратное 143) удовлетворяет условию для 11 и 13 обезьян. Затем следует найти наименьшее число такого вида, удовлетворяющее условию для 17 обезьян.

203. Число яблок у первого мальчика относится к числу яблок у второго мальчика и к числу яблок у третьего соответственно как 6 : 4 и 6 : 3. Сумма чисел 6, 4, 3 равна 13. Следовательно, мальчики получат , и , или 78, 52 и 39 яблок.

204. Двое работников должны напилить 3 м3 дров.

205. В пяти пакетах содержится 27, 25, 18, 16, 14 орехов. Содержимое каждого пакета можно найти, вычитая из 100 общую сумму орехов в тех парах пакетов, куда не входит данный пакет.Так, в третьем пакете содержится 100 - (52 + 30) = 18 орехов.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг