Читаем Пятьсот двадцать головоломок полностью

260. Многоугольник с произвольным числом сторон можно свести к равновеликому треугольнику, а поскольку угол AGF оказался прямым, то сделать это очень легко. Продолжим отрезок GA. Приложим линейку к точкам A и C, параллельно перенесем ее вверх до точки B и отметим точку 1. Затем соединим отрезком прямой точки 1 и D и параллельно перенесем его вверх до точки C, отметив точку 2. Теперь приложим линейку к точкам 2 и E, параллельно перенесем ее до точки D и отметим точку 3. Далее соединим линейкой точки 3 и F, параллельно перенесем ее до E, отметив точку 4. Если теперь мы соединим прямой точки 4 и F то получим треугольник G4F, площадь которого равна площади нашего неправильного поля. Поскольку на карте GF равно 7 см (70 м), то отрезок G4 равен 6 см (60 м) и площадь поля равна ½(70 × 60), или 2100 м2. Этот простой и ценный способ определения площади многоугольников следовало бы знать каждому, но, увы, пока это остается лишь благим пожеланием.

261. Все размеры приведены на рисунке. Обычно для того, чтобы найти решение, приходится решать биквадратное уравнение, но поскольку в условии задачи сказано, что ответ должен быть «в целых метрах», то можно заметить, что число 912 представимо в виде суммы квадратов единственным образом: 912 = 842 + 352. Зная это, определить все размеры очень легко. Искомое расстояние равно 35 м.

262. Соединим прямой точки A и D (см. рисунок) и построим отрезок CE, перпендикулярный и равный отрезку AD. Тогда точка E совпадет с центром одного из квадратов. Проведем прямую EB и продолжим ее в обе стороны. Проведем также через C прямую FG параллельно EB, а через A и D — перпендикуляры к EB и FG. Поскольку Н есть центр углового квадрата, то, приняв отрезок HE за единицу длины, мы обнаружим, что доска имеет размеры 10 × 10.

Если бы не были даны размеры шашек, то мы могли бы разбить доску на более мелкие квадраты. Но поскольку размеры шашек видны из рисунка, дальнейшее разбиение доски невозможно: в более мелких квадратах наши шашки просто не уместятся. Так как расстояние между центрами квадратов равно стороне квадрата, мы легко можем восстановить всю доску, что и показано на рисунке.

263. На рисунке слева показано чрезвычайно простое решение данной головоломки. Звездочка в центре — это офицер, а точки — солдаты.

264. На рисунке справа изображена симметричная звезда в том самом положении, которое она занимает на скатерти. Все другие лоскутки для большей ясности не показаны. Удивительно, как трудно обнаружить звезду до тех пор, пока вам ее однажды не покажут. После эго решение становится совершенно очевидным.

265. Данную трапецию можно вписать в окружность. Полусумма x сторон равна 29. Вычитая из этого числа по очереди все стороны, мы получим 9, 13, 17, 19. Произведение этих чисел равно 37 791. Квадратный корень из полученного числа равен 194,4, что и совпадает с размером искомой площади.

266. Продолжив приведенную ниже таблицу, вы сможете получить сколько угодно рациональных треугольников нужного вида.

PQВысотаПлощадь
2436
8141284
3052451170
11219416816 296
418724627226 974
1560270223403 161 340

Числа в таблице удовлетворяют соотношению 3P2 + 4 = Q2. Каждое следующее значение P (начиная с третьего сверху) можно найти, умножив текущее значение P на 4, после чего следует вычесть из полученного произведения предыдущее значение P. Аналогично вычисляются и значения Q (начиная с четвертого сверху). Высота треугольника равна P/2, площадь — произведению высоты на Q/2. Длина средней из трех сторон всегда оказывается равной Q. В последней строке таблицы приведено наименьшее значение площади, делящееся на 20. Стороны треугольника в этом случае равны 2701, 2702, 2703, его высота 2340.

267. На приведенном здесь рисунке показано, как можно разделить окно на восемь просветов, «у которых все стороны тоже были бы равны». Каждый отрезок прута имеет равную длину.

Подразумевалось (хотя явно и не оговаривалось), что площади всех просветов должны быть равными, а в нашем случае площадь каждого из четырех неправильных просветов на ¼ больше площади квадратного просвета и ни форма, ни число сторон у них не совпадают. И все же это решение точно удовлетворяет поставленным условиям. Если бы из каждой головоломки пришлось удалить все, что допускает неоднозначное толкование, то она оказалась бы перегруженной всевозможными условиями. Лучше оставить кое-что недоговоренным (разумеется, если речь идет не об олимпиадных задачах).

268. На рисунке пунктиром изображено первоначальное окно размером 1 м2. После того как владелец загородил четыре угла, у него осталось квадратное окно вдвое меньшей площади, но в метр шириной и метр высотой.

269. Доску следует разрезать на расстоянии от В, равном 60 - 120 = 79,732...

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг