Читаем Пятьсот двадцать головоломок полностью

Так, мы сначала наполняем 5-литровый кувшин из одного бидона, затем 4-литровый кувшин из 5-литрового, затем выливаем содержимое 4-литрового обратно в бидон и т. д. Все это можно проделать очень легко. Обратите внимание на остроумие последних двух операций: мы наполняем 4-литровый кувшин из второго бидона, а затем доверху доливаем первый бидон.

401. Жирная линия на рисунке показывает путь из Лондона в Типперери, совершаемый за 18 переходов. Чтобы добраться до места назначения за четное число переходов, совершенно необходимо включить в маршрут переход, отмеченный словами Ирландское море.

402. Десять точек, отмеченных на рисунке буквами, представляют собой «нечетные узлы», то есть точки, из которых вы можете идти по нечетному числу (три) направлений. Следовательно, нам известно, что всего потребуется 5 линий (половина 10). Пунктирные линии показывают 4 кратчайших расстояния между узлами. Обратите внимание, что вам нельзя использовать один узел дважды; в противном случае решение можно было бы удушить, обозначив пунктиром EH и CF вместо CD и GH. Зафиксировав наши 4 кратчайших расстояния, мы можем начертить все остальное с помощью одной непрерывной линии от A до K, как показано на рисунке. Добравшись до D, вы должны пройти к C и обратно к D, от G к H и обратно и т. д. Или же вы можете подождать до того момента, когда доберетесь до C, а затем пройти до D и обратно и т. д. Таким образом, вы пройдете дважды только пунктирные линии, что и даст минимально возможное расстояние, которое приходится проходить дважды.

403. Допустим, что мы пересекаем отрезки по мостам, изображенным в случае 1 маленькими параллельными линиями. Далее я преобразую диаграмму, сведя области A, B, C, D, E просто к точкам и изобразив мосты, связывающие данные точки, прямыми, или путями, — случай 2. При этом никакого изменения условий не произошло, поскольку в каждом случае имеется 16 мостов (путей) и они связывают A, B, C, D, E совершенно одинаковым образом. Можно заметить, что наружу выходят 9 мостов, или путей. Очевидно, мы можем попарно соединять данные пути, заботясь лишь о том, чтобы они не пересекали друг друга. Простейший способ показан в случае 3. Выйдя из A, B, C или E, мы немедленно возвращаемся в ту же точку по соседнему мосту, оставив одну точку x обязательно вовне. В случае 2 имеются 4 нечетных узла A, B, D и x (если мы решили входы и выходы сделать такими, как в случае 3); поэтому, как я уже объяснял, нам потребуется 2 росчерка (половина 4), чтобы пройти по всем путям, откуда и следует неразрешимость нашей задачи.

Теперь давайте удалим отрезок AB. Тогда A и B станут четными узлами, а нам придется начинать и заканчивать наш маршрут в нечетных узлах D и x. Двигайтесь вдоль линии, показанной в случае 3, и вы увидите, что это можно сделать, выбросив путь от A до B. Эту схему читатель легко преобразует в случай 4, сказав себе: «Идем из x в D, из D в E, из E наружу и возвращаемся в E» и т. д. Маршрут можно изменить, соединив внешние мосты по-другому: принять за x внешний мост, идущий в A или B вместо D, и выбросить любой из путей AB, AD, BD, xA, xB или xD. В случае 5 путь из x идет в B. Мы по-прежнему выбросили AB, но должны теперь начинать и заканчивать движение в D и x. Преобразовав эту диаграмму (см. случай 6), можно заметить, что получился тот же самый чертеж, который я приводил, формулируя задачу. Теперь читатель может начертить столько маршрутов, сколько пожелает, но при этом всегда придется удалять один из путей (мостов). На примере нашей головоломки хорошо видно, как некоторая изобретательность (вроде той, что была проявлена при преобразовании диаграмм) помогает нащупать правильный подход.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг