Один из наиболее интересных для нас вариантов применения выхода с открытым коллектором показан на Рис. 2.3. В этой схеме четыре элемента с выходом типа «открытый коллектор» подключены к одному и тому же подтягивающему резистору. Обратите внимание на символ , используемый для обозначения выхода с открытым коллектором. Предположим, что на рисунке изображены четыре периферийных устройства, любое из которых может обращаться к процессору (компьютеру или микроконтроллеру). Если этот процессор имеет только один вход для внешнего сигнала прерывания, то четыре сигнальные линии от устройств должны быть объединены вместе по схеме монтажное ИЛИ, как показано на рисунке. Когда все сигнальные линии находятся в неактивном состоянии (лог. 0), выходы всех буферных элементов НЕ выключены (ВЫСОКИЙ уровень) и общая линия подтянута к Vcc резистором RL. Если какая-либо из сигнальных линий становится активной (лог. 1), скажем, линия Sig_1, то на выходе соответствующего буфера появляется НИЗКИЙ уровень. В результате, независимо от состояния остальных сигнальных линий, общая линия переключается в состояние НИЗКОГО уровня, прерывая таким образом работу процессора.
Рис. 2.3. Буферы с открытым коллектором управляют общей линией
Выходной каскад третьего типа (с тремя состояниями), приведенный на Рис. 2.2, в, обладает свойствами выходов обоих рассмотренных типов. При разрешенном выходе логические состояния формируются обычным образом, т. е. выдачей ВЫСОКОГО и НИЗКОГО напряжения. При запрещении выхода он становится разомкнутой цепью, независимо от функционирования внутренней логической схемы и любых изменений на ее входах. Выход с тремя состояниями обозначается символом .
В качестве примера использования выхода указанного типа рассмотрим ситуацию, показанную на Рис. 2.4. В данном случае основному контроллеру требуется прочитать данные с одного из нескольких устройств, подключенных к нему группой общих линий. Поскольку эта магистраль, или, иначе, шина данных, является общим ресурсом, в любой момент времени доступ к шине предоставляется только выбранному устройству. Доступ должен быть закрыт сразу же после считывания данных, с тем чтобы шиной могло воспользоваться другое устройство. Как показано на рисунке, все выходы, подключаемые к шине, обозначаются символом . После выбора устройства управление линиями шины будет осуществляться только активными логическими уровнями. Микросхема сдвоенного 4-битного буфера с тремя состояниями 74LS2441[28] имеет выходы с повышенной нагрузочной способностью (обозначаемые символом [>), специально предназначенные для работы на длинных линиях, имеющих большую емкость.
Рис. 2.4.Совместное использование шины
Интегральные микросхемы, содержащие до 12 логических элементов, относятся к микросхемам малой степени интеграции. Если в корпусе микросхемы содержится до 100 логических элементов, то она относится к классу микросхем средней степени интеграции; до 1000 — к классу больших интегральных схем или, сокращенно, БИС. Все микросхемы, имеющие более 1000 логических элементов, относятся к классу сверхбольших интегральных схем (СБИС). К последнему классу, в частности, относятся микросхемы памяти и микроконтроллеры.
Изображенные на Рис. 2.5 микросхемы, содержащие определенным образом соединенные элементы И-НЕ, являются типичным примером интегральных микросхем средней степени интеграции. Если вспомнить, что на выходе элемента И-НЕ лог. 0 присутствует только в том случае, если на всех его входах присутствует лог. 1 (см. Рис. 1.2, в на стр. 27), то можно увидеть, что при любых сочетаниях сигналов на входах выборки В А (21 20) (Рис. 2.5, а) сигнал лог. 0 будет присутствовать на выходе только одного вентиля. Так, выход Y¯2 будет активным при В А = 10. После рассмотрения таблицы истинности становится понятно, что данная схема декодирует двоичный адрес В А таким образом, что при подаче адреса n становится активным выход Y¯n. Полностью название микросхемы 74LS139[29] звучит так: сдвоенный натуральный дешифратор 2 на 4. Сдвоенным он называется потому, что в одном корпусе расположены две такие схемы. Символ X/Y обозначает преобразование кода X (натуральное двоичное число) в код Y (унарный — один из n). Вход разрешения G¯ подключен параллельно ко всем элементам. Таким образом, дешифратор выполняет свои функции только в том случае, если на входе G¯ присутствует НИЗКИЙ уровень (лог. 0). Если на входе G¯ присутствует ВЫСОКИЙ уровень, то независимо от состояния входов В и А (в таблице истинности эта ситуация обозначается символом «X» — безразличное состояние) все выходы устанавливаются в неактивное состояние (лог. 1). Пример использования микросхемы 74LS139 приведен на Рис. 2.25 (стр. 54).
Рис. 2.5. Микросхемы дешифраторов 74LS138 (К555ИД7) и 74LS139 (К531ИД14)