Читаем По следам бесконечности полностью

Статья называлась «О кривизне пространства» и была посвящена анализу уравнений общей теории относительности.

Фридману удалось обнаружить совершенно неожиданный факт: оказалось, что эти уравнения имеют не только статические, но и нестатические решения, то есть такие решения, которым соответствуют нестационарные — расширяющиеся или сжимающиеся однородные изотропные модели Вселенной.

Согласно выводу Фридмана, «непустая», заполненная материей, Вселенная должна либо расширяться, либо сжиматься, а кривизна пространства и плотность вещества при этом соответственно уменьшаться или увеличиваться.

Александр Фридман не был физиком-теоретиком. По терминологии, принятой в наше время, его специальностью была математическая физика — он занимался изучением динамики метеорологических явлений.

Течение атмосферных процессов зависит от множества различных причин, и поэтому системы дифференциальных уравнений, с помощью которых их описывают, чрезвычайно сложны. Занимаясь изучением таких систем, Фридман, увлекшийся динамической метеорологией, еще в бытность студентом физико-математического факультета Санкт-Петербургского университета накопил огромный опыт.

Эти занятия помогли ему выработать и еще одно ценнейшее качество исследователя природы: Фридман не просто производил математические выкладки, он всегда стремился распознать за формулами реальные физические явления.

— Александр Александрович Фридман имел редкие способности к математике, — вспоминает профессор А. Ф. Гаврилов, — однако изучение одного только математического мира чисел, пространства и функциональных соотношений в них его не удовлетворяло. Ему было мало и того мира, который изучался теоретической и математической физикой. Его идеалом было наблюдать реальный мир и создавать математический аппарат, который позволил бы формулировать с должной общностью и глубиной законы физики и затем, уже без наблюдения, предсказывать новые законы.

Счастливое сочетание качеств ученого-исследователя, которое и позволило Фридману сделать чрезвычайно важный шаг в познании картины Вселенной.

Но известность и авторитет в науке тоже играют немаловажную роль. Особенно в тех случаях, когда никому не ведомый молодой исследователь посягает на мнение признанных корифеев. В свое время действие этого фактора испытал на себе и сам Эйнштейн. Теперь же, став известнейшим автором двух великих физических теорий, он, в свою очередь, недооценил результаты, полученные Фридманом.

Трудно сказать, проверял ли Эйнштейн выводы Фридмана с карандашом в руках. Скорее всего, бегло. Должно быть, великий физик положился на интуицию, а она подсказывала, что ничего подобного не может быть: ведь нестационарная Вселенная Фридмана противоречила его собственной стационарной модели.

Но как бы там ни было, Эйнштейн, ознакомившись со статьей Фридмана, поместил в очередном номере «Физического журнала» коротенькое замечание, в котором категорически заявлял, что результаты Фридмана вызывают серьезные сомнения и скорее всего неверны.

Прочитав это, Фридман написал Эйнштейну подробное письмо, в котором обстоятельно излагал существо своей работы. На этот раз великий физик проверил все с особенной тщательностью и к своему удивлению пришел к выводу, что… Фридман совершенно прав.

Возможно, другой на его месте из принципа продолжал бы отстаивать свое первоначальное мнение или, в лучшем случае, просто промолчал. Но Эйнштейну была абсолютно чужда какая бы то ни было амбиция, увы, нередко застилающая глаза маститым ученым. Самой главной целью его жизни было познание реальной природы, и потому он никогда не упорствовал в своих ошибках. Не имело значения, что ошибся он сам, было гораздо важнее, что ошибка исправлена и тем самым внесено что-то новое в наши знания о мире.

И 13 мая 1923 года в редакцию «Физического журнала» поступило письмо Эйнштейна, которое и было вскоре опубликовано под заголовком «Заметка о работе А. Фридмана о кривизне пространства».

«В предыдущей заметке я критиковал названную работу, — писал Эйнштейн. — Однако моя критика, как я убедился из письма Фридмана, основывалась на ошибках в вычислениях.

Я считаю результаты Фридмана правильными и проливающими новый свет. Оказывается, что уравнения поля допускают наряду со статическими также и динамические (т. е. переменные относительно времени) центрально-симметричные решения для структуры пространства».

Любопытно: как выяснилось позднее, и статическая модель Эйнштейна тоже неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная должна обязательно либо расширяться, либо сжиматься.

Физикам и астрономам стало ясно, что уравнения Эйнштейна имеют решения, описывающие мир, геометрия которого меняется с течением времени. При расширении средняя плотность вещества постепенно убывает, а следовательно, меняется и кривизна пространства.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже