Выход из второго кризиса оснований математики был найден в теории пределов. С точки зрения этой теории, бесконечно малая — это переменная величина, предел которой равен нулю.
А если говорить строго, величина называется бесконечно малой, если, начиная с какого-то момента, ее численные значения сделаются и будут оставаться меньше наперед заданного сколь угодно малого положительного числа.
Таким образом, бесконечно малые стали рассматриваться как процесс, то есть не как актуальная, а как потенциальная бесконечность.
С появлением математического анализа идея бесконечности начинает играть все большую и большую роль, постепенно выдвигаясь на самый передний план. Не случайно выдающийся немецкий математик XIX столетия Д. Гильберт называл математический анализ «единой симфонией бесконечного».
С тех пор вся математика оказалась настолько тесно связанной с понятием бесконечности, что многие исследователи даже определяют ее как «науку о бесконечном».
Оценивая роль бесконечности в математике с позиций науки второй половины текущего столетия, известные ученые А. Френкель и И. Бар-Хиллел, например, пишут, что «для математики — в отличие почти от всех других наук — это понятие является настолько жизненно необходимым, что огромное большинство математических фактов, не имеющих отношения к бесконечности, едва ли не тривиально».
Немного философии
По выражению академика Наана, кризисы в науке свидетельствуют о достаточно высоком уровне ее развития.
В самом деле, для того чтобы сложились неразрешимые противоречия принципиального характера, наука должна накопить достаточно большой материал: факты и теории, построенные для их объяснения.
Кризис в науке обычно возникает либо тогда, когда появляются новые факты, которые не укладываются в рамки существующей теории, либо развитие этой теории вскрывает присущие ей глубокие внутренние противоречия.
Кризис в математике XVII столетия был несколько иного рода, он возник в связи с тем, что вдруг оказались неясными и даже сомнительными самые основы этой науки.
Но по какой бы причине ни возникал кризис — он требует глубокого философского осмысления. Ведь кризис — это не просто тупик, глухая стена, конец пути. Как правило, это предвестник скачка, рождения оригинальных идей, появления принципиально новых путей, предвестник быстрого прогресса.
В такие периоды, как подчеркивал В. И. Ленин в эпоху кризиса физики на рубеже XIX и XX столетий, естествознанию ни в коем случае не обойтись без философии.
Поэтому но удивительно, что начиная с XVII столетия проблема бесконечности вновь, как и в Древней Греции, оказывается в поле зрения не только математиков, но и философов.
И прежде всего вопрос стоял так: присуща ли бесконечность, в той или иной форме, самой природе или она привносится в нее человеком?
Такой крупнейший французский философ, как Рене Декарт (1596–1650), утверждал, что представление о бесконечности каких-либо объектов материального мира «проистекает из недостаточности нашего разума, а не из природы». Тем самым Декарт хотел сказать, что никакой реальной бесконечности в мире не существует, она — продукт несовершенства человеческого мышления. При этом вовсе не случайно Декарт называет бесконечность мира неопределенностью, превращая ее в своеобразный символ неспособности человека охватить своим разумом окружающий мир, представить себе его границы.
Над проблемой бесконечности задумывался и такой выдающийся немецкий философ, как Иммануил Кант (1724–1804). Но хотя Кант, по существу, интересовался вполне определенным типом бесконечности, а именно — бесконечностью мира в пространстве и во времени, а саму бесконечность понимал как бесконечную протяженность, он тем не менее во многом разделял точку зрения Декарта.
— Бесконечность — плод человеческого ума, — утверждал и Кант. — Это понятие совершенно неприменимо к реальному миру. Мир сам по себе ни конечен, ни бесконечен, ибо о «мире как таковом» вообще ничего нельзя сказать.
Кант видел противоречивость бесконечности. Но, будучи метафизиком, он был убежден в том, что любые противоречия присущи только человеку, человеческому сознанию, а в природе их нет. Поэтому противоречивость бесконечности служила для него доказательством ее субъективного характера.
В подтверждение своей точки зрения Кант приводил «антиномии», весьма похожие на апории Зенона.
Он пытался доказать, что применение наших представлений о бесконечности к окружающей природе неизбежно приводит к неразрешимым противоречиям.
— Предположим, — говорил, например, Кант, — что у мира не было начала во времени. Но если так, то до любого, в том числе и до настоящего, момента, протекла вечность. Однако бесконечность неисчерпаема и бесконечный ряд не может быть завершен. А следовательно, настоящий момент никогда не мог бы наступить. Но так как он все же наступил, следовательно, мир конечен во времени.
Однако это были чисто абстрактные логические рассуждения, основанные на ньютоновском представлении об абсолютном пространстве и абсолютном времени.