Читаем По ту сторону кванта полностью

На первый взгляд в этом нет никакого выигрыша: просто от набора частот мы перешли к набору термов. Однако это не так: попытайтесь прочесть книгу, в которой нет промежутков между словами, и вы сразу почувствуете разницу. Особенно если эта книга на неизвестном языке. Кроме того, чисел стало значительно меньше: чтобы определить частоты 50 линий водорода, которые были известны в начале века, достаточно знать десяток термов.

Неожиданно в хаосе чисел обнаружилась система. Беспорядочный набор линий распался на серии. В непонятной книге стали различать отдельные слова. В простейшем случае — в атоме водорода — удалось разглядеть даже буквы, из которых они составлены. Однако смысл слов и происхождение букв по-прежнему оставались неизвестными: иероглифы еще не заговорили, хотя и не казались теперь столь загадочными.

Стремление осмыслить структуру спектра и в самом деле напоминало попытку почти вслепую расшифровать незнакомый текст. Утомительная работа длилась больше четверти века, и отсутствие общей идеи отталкивало от нее многие глубокие умы. Необходимо было найти ключ к шифру.

Это сделал Нильс Бор в 1913 году.

Кванты

Излучение возникает внутри атома, однако, покинув его, существует независимо. Иногда оно состоит из волн одинаковой длины — такое излучение называют монохроматическим. Линейчатый спектр атома состоит из набора монохроматических лучей, и наборы эти различны для разных атомов.

До сих пор нас большей частью интересовала только одна характеристика волн — их частота ν. Однако лучи — сложное явление, и свойства их нельзя свести только к частоте излучения. Солнечный луч прозрачен, но вполне материален — он даже имеет вес: каждую минуту на квадратный сантиметр поверхности Земли падает 2 · 10–15 г света. На первый взгляд неощутимо мало, но это означает, что за год на нашу планету падает 80 тысяч тонн солнечных лучей. Эти тонны лучей осуществляют круговорот веществ в природе, так что в конечном итоге вся жизнь на Земле возможна только под Солнцем.

Действие излучения легче всего сопоставлять с морскими волнами, набегающими на берег: после работ Христиана Гюйгенса (1629–1695) и Огюстена Жана Френеля (1788–1827) такая аналогия стала бесспорной. Каждый год приносил новые этому доказательства в явлениях интерференции и дифракции света. В 1873 году Джемс Клерк Максвелл (1831–1879) теоретически предсказал, что свет, падая на поверхность тел, должен оказывать на них давление (также в полном согласии с нашей аналогией). Световое давление — очень тонкий эффект, но Петр Николаевич Лебедев (1866–1912) в 1899 году все-таки обнаружил его экспериментально. Казалось, теперь волновая природа света доказана настолько надежно, что всякие дальнейшие опыты для ее проверки не имеют смысла.

К счастью, опыты в физике ставят не только для проверки теорий. И в то время, когда Лебедев завершал свой знаменитый эксперимент, уже существовал другой, столь же тщательный, но более непонятный. В 1887 году Генрих Рудольф Герц (1857–1894) (тот самый, который доказал волновую природу электромагнитного излучения и тем самым справедливость всей электродинамики Максвелла) обнаружил явление, впоследствии названное фотоэффектом. Суть его в следующем.

Если свет ртутной лампы (теперь мы такие лампы называем кварцевыми) направить на металл натрий, то с поверхности его полетят электроны.

В конце века большая часть физиков уже ясно сознавала, что атом сложен, и потому само по себе это явление никого не удивило. Довольно быстро все согласились с тем, что электроны в опыте Герца вылетают из атомов натрия под действием излучения кварцевой лампы.

Странно и непонятно было другое — законы этого явления. Установлены они были Филиппом Ленардом (1862–1947) и Александром Григорьевичем Столетовым (1839–1896) на рубеже XX века. Эти ученые измеряли число выбитых электронов и их скорость в зависимости от интенсивности и частоты падающего излучения.

Мы уже знаем, что лучи, возникающие внутри атомов, различаются между собой не только длиной волны λ (или что то же, частотой ν), но также интенсивностью. Это ясно видно на спектрограммах: некоторые линии там значительно ярче других, например в желтом дублете натрия линия D2 вдвое ярче линии D1.

Наш предыдущий опыт и знания о волнах подсказывают нам, что действие волн тем заметнее, чем больше их амплитуда. Чтобы убедиться в этом, достаточно выйти на берег моря во время шторма. Значит, увеличивая амплитуду, мы тем самым увеличиваем интенсивность лучей. Интенсивность излучения можно увеличить и по-другому: увеличивая число излучающих атомов. Поэтому, если вместо одной ртутной лампы взять две, три, десять, то интенсивность излучения возрастет во столько же раз. Естественно ожидать, что и энергия выбитых электронов вырастет в такой же пропорции.

Но энергия электронов оставалась прежней, менялось лишь число их.

Такова первая несообразность, которая ожидала ученых в конце опытов. Зато энергия зависела от частоты падающего излучения, и притом сильно.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука