Эйнштейн, конечно, знал историю оптики не хуже других. Но его независимый ум равнодушно относился к ее солидному авторитету. Все прежние заслуги оптики для него не имели значения, если они не могли объяснить единственный, но бесспорный опыт. Он глубоко, почти религиозно, верил в единство природы, и для него один такой опыт значил не меньше, чем вся история оптики. А его честность не позволила ему пройти мимо неугодного факта.
В науке по-настоящему опасны только неверные опыты: опытам принято верить. Но любую гипотезу — какой бы привлекательной она ни казалась — всегда тщательно проверяют. Даже если она окажется ложной, опыты, которые ее опровергли, часто приводят к результатам более ценным, чем сама гипотеза. Проверили и гипотезу Эйнштейна — она оказалась истинной.
В 1911 году Роберт Милликен, проверяя уравнение Эйнштейна, определил из него величину постоянной Планка
Конечно, Эйнштейн не отрицал, что она все-таки существует. И не оспаривал опытов, которые доказывали волновую природу света. Просто он довел возникшее противоречие до логического конца и предоставил разрешать его следующему поколению физиков.
Несмотря на единодушные протесты, мысль о квантах света не погибла и восемь лет спустя дала могучие всходы. Это произошло в 1913 году, когда в лабораторию Резерфорда пришел застенчивый и неторопливый датчанин Нильс Бор.
20 мая 1904 года в Манчестере, где провел лучшие годы своей ученой деятельности Джон Дальтон, с торжественностью, к которой обязывают традиции англичан и значительность события, был отмечен столетний юбилей атомной теории материи.
Победа ее пришла не сразу: даже после работ Дальтона многие долгое время смотрели на атомистику просто как на «…любопытную гипотезу, допустимую с точки зрения нашей познавательной способности». Единодушие, с которым философы прошлого века отрицали существование атомов, пошатнуло веру в их реальность и у физиков. Например, философ и физик Эрнст Мах (1838–1916) прямо называл всех атомистов «общиной верующих». Его можно понять: человеку трудно вообразить себе нечто далее
Но победа эта все-таки немного запоздала: после работ Томсона и Резерфорда понятие «атом» потеряло свой прежний смысл. Стало ясно, что атом — это не самая простая частица вещества, хотя его и нельзя расщепить средствами химии. «К сожалению, законы природы становятся вполне понятными только тогда, когда они уже не верны», — говорил Эйнштейн. Это не означает, конечно, что одновременно с этим законы теряют и все свое значение. В истории атома — независимо от дальнейших успехов науки — доказательство его реальности (даже в старом смысле ατομος — неделимый) навсегда останется одной из самых важных ее побед.
Окончательное утверждение атомистики также связано с именем Эйнштейна: в том же 1905 году независимо от польского физика Мариана Смолуховского (1872–1917) он дал математическое описание брауновского движения. Его теорию подтвердил экспериментально Жан Перрен, который в 1909 году предпринял систематические и тщательные исследования брауновского движения. И до Перрена многие физики были убеждены, что истинная причина этих движений — толчки молекул жидкости, которые сами невидимы даже в лучший микроскоп. Но удивительные по изяществу опыты Перрена не просто доказали справедливость этих утверждений — из них следовало нечто большее: непонятное движение частиц в жидкости есть точная модель истинного движения невидимых молекул, увеличенная в несколько тысяч раз. Поэтому, изучая брауновское движение частиц, мы тем самым получаем наглядную картину движений невидимых молекул. (Точно так же, как знание свойств радиоволн дает нам представление о волнах света и даже о рентгеновых лучах.)
После этих работ гипотезу об атомах признали все, даже знаменитый враг ее — Вильгельм Оствальд (1853–1932). А в 1909 году тот же Резерфорд, который доказал сложную структуру атома, вместе с Ройдсом дал и наиболее убедительное доказательство атомистической структуры вещества. Вот как это произошло.