Читаем По ту сторону кванта полностью

Линейчатый спектр состоит из набора отдельных резких линий, возникает при нагревании газов и паров (когда малы взаимодействия между атомами), и — что особенно важно — этот набор линий неповторим для любого элемента. Более того, линейчатые спектры элементов не зависят от вида химических соединений, составленных из этих элементов. Следовательно, их причину надо искать в свойствах атомов.

То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все: но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году благодаря работам знаменитого английского астрофизика Нормана Локьера (1836–1920). А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!

<p>АТОМЫ</p>

В 1865 году, когда появились работы Йозефа Лошмидта, об атомах знали немного: их представляли себе твёрдыми шариками размером примерно 10-8 см и весом от 10-24 до 10-22 г. Каждому такому «шарику» можно приписать «атомный вес» — число, которое показывает, во сколько раз он тяжелее атома водорода. Например атомный вес кислорода равен 16, а гелия — 4. Отсюда просто заключить, что в 1 г водорода, в 4 г гелия или в 16 г кислорода (или, как принято говорить в химии, в одном грамм-атоме любого вещества) содержится одинаковое число атомов водорода гелия кислорода. Это число N=6,02•1023 — число Авогадро — мы уже однажды приводили.

Йозеф Лошмидт

Представлений об атомах — твёрдых шариках — было достаточно для объяснения многочисленных фактов из химии, теории теплоты и строения материи. Однако уже к 1870 году вполне оформилась мысль, что атом состоит из ещё более простых частиц, и физики принялись их искать. Прежде всего они стали исследовать электрические свойства атома.

Все вещества, как правило, электрически нейтральны. Однако при некоторых условиях они обнаруживают электрические свойства, например, если натирать стекло шерстью, янтарь — шёлком и тому подобное. Особенно отчётливо они проявляются в явлениях электролиза.

Если в расплав какой-либо соли (скажем, поваренной — NaCl) опустить два электрода и подключить их к полюсам батареи, то в расплаве произойдут изменения: на катоде (электрод, который подключён к отрицательному полюсу батареи) начнёт выделяться чистый металл натрий, на аноде — газ хлор. Это означает, что в расплаве атомы натрия заряжены положительно, а атомы хлора — отрицательно, и поэтому под действием электрического поля они двигаются в противоположных направлениях.

Майкл Фарадей (1791–1867) в 1834 году установил количественные законы этого явления. Оказалось, что если через растворы различных веществ, молекулы которых построены из одновалентных атомов, пропускать одно и то же количество электричества, равное 96521 кулону, то на электродах всегда выделяется ровно по одному грамм-атому вещества. Например, из расплава поваренной соли выделится 23 г металла натрия и 37,5 г газа хлора.

Закон электролиза Фарадея легко понять, если предположить, что в расплаве NaCl с каждым атомом связан определённый заряд, причём для ионов Na+ и Cl- эти заряды равны и противоположны по знаку. (Название ион — «странник» — таким «заряженным» атомам дал Фарадей.) Заряд, который переносит один ион, равен e=4,802•10-10 CGSE (электростатических единиц электричества).

Это значение очень мало, но мы уже немного привыкли к таким малым величинам. Более удивительно другое: заряда, меньшего, чем этот элементарный заряд e, обнаружить не удалось. С лёгкой руки Джонстона Стонея (1826–1911) в 1891 году это наименьшее количество заряда получило название «электрон».

<p>ЭЛЕКТРОНЫ</p>

Первоначально с этим словом не связывали понятия о частице. Оно служило лишь для обозначения того наименьшего количества заряда, которое может переносить с собой ион любого атома. Однако подспудно мысль о том, что электрон — частица, всегда жила. Действительно, проследите мысленно процесс электролиза: вот ион натрия (Na+), двигаясь в растворе под действием электрического поля, подходит к катоду; на катоде избыток отрицательных зарядов, поэтому в момент, когда ион Na+ его касается, он забирает от катода один отрицательный заряд и, не меняя веса, выделяется в виде нейтрального атома натрия.

Попробуйте теперь вообразить сам момент перехода отрицательного заряда от катода к иону Na+: что добавляется к иону, когда он, не меняя веса, становится нейтральным?

Представить себе этот процесс довольно трудно, если не предполагать при этом, что элементарный заряд может существовать и вне атома. Эту трудность сознавали, конечно, все, но признать атомарное строение электричества было ещё труднее, ибо при этом рушились удобные и привычные представления об электричестве как о некоем тонком флюиде, который без труда проникает во все тела.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг