Читаем По ту сторону кванта полностью

В 1881 году на собрании Лондонского химического общества, посвящённом чествованию памяти Майкла Фарадея, Герман Людвиг Фердинанд фон Гельмгольц (1821–1894) прочёл доклад «Современное развитие взгляда Фарадея на электричество». В этом докладе Гельмгольц впервые отчётливо сформулировал мысль о «молекулярном строении электричества». Конечно, сама по себе эта мысль даже в то время не была новой.

Ещё в 1749 году великий американец Бенджамен Франклин подозревал нечто похожее, но тогда его догадка ни на чём, в сущности, не была основана, а потому и не привела к новым — следствиям. В 1871 году к мысли Франклина возвратился немецкий физик Вильгельм Эдуард Вебер (1804–1891), но сочувствия не встретил: в его время об электричестве знали уже так много, что на веру гипотез не принимали — знание предполагает ответственность. Нужны были экспериментальные доказательства идеи об электроне. Их стали искать в явлениях проводимости газов.

Бенджамен Франклин

Представьте себе стеклянную трубку, наполненную каким-либо газом (например, неоном) и запаянную с обоих концов вместе с проволочками (обычно — платиновыми). Если мы обе эти проволочки присоединим к разным полюсам батареи: одну к отрицательному (катоду), а другую — к положительному (аноду), то по цепи пойдёт ток. Совершенно так же, как и в случае с электролитом. Вероятно, именно эта аналогия с явлениями электролиза и побудила в своё время (в 1838 году) Майкла Фарадея построить прообраз такой трубки («электрическое яйцо» Фарадея). Как мы увидим позже, аналогия была чисто внешней, но и само по себе явление проводимости газов было настолько интересным, что многие исследователи посвятили жизнь изучению его свойств.

Примерно в середине прошлого века Юлиус Плюккер (1801–1868) (это имя знакомо теперь каждому математику) оставил свои занятия геометрией, которые не нашли признания среди современников, и увлёкся опытной физикой. Когда вы следите за игрой световых реклам, вы обязаны этим зрелищем профессору математики в Берлине и Бонне. Именно Плюккер в 1858, году изобрёл эти светящиеся трубки. (Обычно их называли Гейслеровыми, по имени знаменитого стеклодува Генриха Гейслера, который был техническим ассистентом Плюккера и научился особенно искусно их изготовлять; а ещё полвека спустя их повсеместно называли трубками Крукса).

Прежде всего Плюккер установил, что проводимость газа зависит от его концентрации в трубке и возрастает, если часть газа из трубки откачать. При этом каждый газ начинает светиться своим характерным цветом, так что по цвету свечения можно определить состав газа в трубке. (К этому выводу Плюккер пришёл даже раньше Кирхгофа и Бунзена, но не понял его значения.) Если увеличивать разрежение в трубке, то вблизи катода появляется тёмное пространство («катодное пятно»), которое при дальнейшем откачивании газа из трубки расширяется и наконец заполняет её всю: трубка перестаёт светиться. Но это тёмное пространство живёт, его пронизывают какие-то «лучи», хоть и невидимые для глаза (как невидима летящая пуля, пока не встретит препятствия на своём пути).

Плюккер

Ученик Плюккера Евгений Гольдштейн (1850–1931) в 1876 году дал им название: катодные лучи. Ещё раньше, в 1869 году, другой его ученик, Иоганн Вильгельм Гитторф (1824–1914), обнаружил отклонение этих лучей в магнитном поле, и наконец в 1879 году Кромвель Вэрли (1828–1883) показал, что они заряжены отрицательно.

Поставьте себя на место этих исследователей: 70-е годы XIX столетия, у вас в руках набор интересных фактов, однако связи между ними не видно. С одной стороны, явление проводимости газов очень напоминает процессы электролиза, но, с другой стороны, происходят вещи совсем непонятные: например, проводимость растёт с уменьшением концентрации газа в трубке. Кроме того, обнаружен только поток отрицательных «лучей» и не обнаружено положительных.

Нужна была руководящая идея.

Такая идея возникла после блестящих опытов, которые поставил Уильям Крукс — английский физик и химик. Это был интересный человек, наделённый к тому же редким даром — предвидеть фундаментальные открытия. Крукс нигде не служил и всецело был предан науке (что не помешало ему, однако, верить в спиритизм и в 1913 году стать президентом Королевского общества).

Прежде всего, он гораздо сильнее откачал воздух из трубки. При этом от катода отделилось ещё одно, более тёмное пространство, которое также постепенно заполнило всю трубку, после чего анод вспыхнул зеленоватым светом. Тот день 1878 года, когда это произошло, можно считать днём рождения электронно-лучевой трубки — основной части современного телевизора. Уже за одно это Круксу обеспечено признание потомков. Но для самого Крукса это было только началом — он стал тщательно изучать свойства излучения, которое он называл лучистой материей (этот термин ввёл всё тот же Фарадей ещё в 1816 году). Крукс чувствовал, что столкнулся с совершенно новым явлением природы, и предлагал назвать его «четвёртым состоянием вещества», которое «ни жидко, ни твёрдо, ни газообразно». Он писал:

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг