Комментируя открытие Галилеем огромного количества слабых звезд, Кеплер пишет: «Ты, не колеблясь, утверждаешь, что число видимых звезд превышает 10 000. Но чем больше их и чем плотнее они располагаются на небе, тем правильнее моя аргументация против неограниченности мира, приведенная в книге „О новой звезде“… Там доказывается, что населенный людьми уголок мира с Солнцем и планетами занимает особое положение, в силу чего невозможно, чтобы с какой-нибудь неподвижной звезды открывалась такая же картина мира, как с нашей Земли или с Солнца». И далее: «Во сколько же раз будут превосходить по своим видимым размерам Солнце 10 000 малых дисков, слитых воедино? Если это верно и если те Солнца того же рода, что и наше Солнце, то почему бы им всем, взятым вместе, не превосходить по блеску наше Солнце? Как может быть свет, изливаемый всеми далекими Солнцами на открытые пространства, столь слаб, что наше Солнце, стоит лишь его лучам проникнуть в закрытую комнату через отверстие, проколотое кончиком тонкой иглы, по блеску превосходит неподвижные звезды в том виде, в каком мы видим их на почти безграничном удалении за стенами комнаты?»
На основе подобной аргументации Кеплер делает вывод, что многочисленные звезды, открытые Галилеем, гораздо слабее Солнца, иначе их суммарный блеск затмил бы его: «тело нашего Солнца по блеску в не поддающееся оценке число раз превосходит все неподвижные звезды, вместе взятые» и «…наш мир — не просто один из членов стада, содержащего бесконечно много других миров».
Вселенная Кеплера — это вспышка света в окружающем мраке. Она представляет собой сферу неподвижных звезд, в середине которой находится Солнце с вращающимися вокруг него планетами. Эта Вселенная конечна — она окружена со всех сторон темной стеной, которую мы видим в просветах между звездами.
Как видно из предыдущего, Кеплер, по сути, сформулировал фотометрический парадокс (бесконечное множество подобных Солнцу далеких звезд должны затмить Солнце) и предложил его решение — Вселенная ограничена в пространстве и содержит конечное количество звезд.
В XVII столетии был еще один удивительный для науки год. В 1687 году Исаак Ньютон опубликовал «Математические начала натуральной философии», заложившие основу так называемой классической физики и картины мира, просуществовавших до начала XX века. В своих «Началах» Ньютон не затрагивает вопросы крупномасштабного строения мира, ничего не пишет и о звездах. Высказаться на эти темы его подтолкнула переписка с молодым священником Ричардом Бентли в 1692 и 1693 годах.
Преподобный Ричард Бентли (1662–1742), капеллан епископа Ворчестерского, обратился к Ньютону с просьбой ответить на ряд вопросов об устройстве Вселенной. Для такого обращения у Бентли была очень веская причина — в рамках «Бойлевских чтений» ему было поручено прочесть в Лондоне восемь публичных проповедей в защиту христианства. Одной из целей этих проповедей было показать, что подтвержденная трудами Ньютона гелиоцентрическая астрономия не противоречит теологической картине мира. Бентли был хорошим теологом и филологом, но с физикой и математикой знаком был плохо. Поэтому он написал Ньютону — кто как не Ньютон был самым большим авторитетом в вопросах «натурфилософии» в Англии? — и Ньютон ему охотно ответил.
В своих письмах (всего их было четыре) Ньютон рассмотрел случаи конечной и бесконечной Вселенных, в которых действует закон всемирного тяготения. В случае ограниченного объема Вселенной все составляющие ее тела под действием взаимного притяжения рано или поздно должны были бы слиться в «одну гигантскую сферическую массу». Этого нет, следовательно, Вселенная бесконечна.
Рис. 9. Исаак Ньютон (1643–1727)
В бесконечном пространстве центров конденсации будет бесконечное множество и именно таким образом должны были образоваться Солнце и другие бесчисленные звезды. В бесконечной Вселенной на любую звезду с каждой из сторон действует бесконечная сила, эти силы уравновешивают друг друга и звезда остается в покое. Однако такая Вселенная должна быть неустойчива, так как малейшее нарушение взаимных расстояний между звездами должно привести к тому, что