Читаем Почему небо темное. Как устроена Вселенная полностью

Однако еще раньше — в 1668 году — шотландский математик, астроном и оптик Джеймс Грегори (1638–1675) опубликовал замечательную модификацию фотометрического метода. Грегори предложил не сравнивать яркости звезд и Солнца, что на практике очень сложно, а использовать в качестве промежуточного стандарта яркость планет. Суть его метода очень проста — ночью можно сравнить яркость какой-либо звезды с яркостью внешней планеты (Марса, Юпитера, Сатурна), а затем, зная расстояние этой планеты от Солнца и ее угловой диаметр, можно рассчитать ее яркость по сравнению с яркостью Солнца (предполагая, конечно, что планета светит отраженным светом и задавая определенный коэффициент отражения). Применив этот метод к Сириусу, и используя наблюдения Сатурна, Грегори получил, что эта звезда находится в 80000 раз дальше Солнца — результат гораздо лучший, чем у Гюйгенса, хотя все еще существенно заниженный.

Во второй части работы о фотометрическом парадоксе Шезо использует метод Грегори для определения расстояний до ярчайших звезд (Сириуса и Регула) на основе сравнения их блеска с Сатурном, Юпитером и Марсом. Он заключает, что расстояние до ярчайших звезд примерно в 240 000 раз превышает расстояние от Земли до Солнца. Эта оценка составляет около 4 световых лет или чуть больше 1 пк. Учитывая грубость используемого метода, результат можно признать просто превосходным!

Однако Шезо не был первым человеком, правильно оценившим масштаб межзвездных расстояний. Как оказалось, это было сделано Исааком Ньютоном в «De mundi systemate» («Система мира») — дополнении к «Началам», написанном еще в 1680-х годах и опубликованном в 1728 году, уже после его смерти. В этой работе Ньютон методом Грегори нашел, что расстояние до звезд первой величины примерно в 100 000 раз превышает расстояние от Сатурна до Солнца, что составляет ~ 1 000 000 астрономических единиц (4.8 пк)[7].

Еще один интересный результат небольшой работы Шезо о фотометрическом парадоксе — корректная математическая оценка доступной наблюдениям области Вселенной. Если предположить, что все звезды подобны Солнцу и что они равномерно распределены в пространстве со средним взаимным расстоянием 4 световых года, то в пределах сферы радиусом 3x1015 световых лет звезды перекроют своими дисками всю небесную сферу. Свет от более далеких звезд будет экранирован дисками более близких объектов и внешняя часть Вселенной останется ненаблюдаемой.

Британский космолог Эдвард Харрисон считает, что, возможно, именно огромность, несоизмеримость этих масштабов могла подтолкнуть Шезо к идее межзвездного поглощения — ведь даже ничтожная непрозрачность межзвездной среды на столь больших расстояниях способна полностью скрыть далекие объекты и, тем самым, сделать ночное небо темным.

Следующий исследователь, внесший вклад в исследование парадокса, названного позднее его именем, — это немецкий врач и астроном-любитель Генрих Ольберс. Ольберс был дипломированным медиком, но, горячо увлекаясь астрономией, он в течение многих лет сочетал оба занятия. Днем он был солидным бременским врачом, а ночью проводил наблюдения в частной обсерватории на верхнем этаже собственного дома. Лишь после смерти дочери и второй жены он оставил врачебную практику и с 1820 года полностью посвятил себя астрономии. В биографическом очерке, включенном в книгу С. Ньюкомба и Р. Энгельмана «Астрономия в общепонятном изложении» (опубликована на русском языке в 1896 году), об Ольберсе было написано так: «Едва ли можно назвать другого любителя, которому астрономия была бы так много обязана, как Ольберсу; и мало было специалистов по астрономии, которые обладали столь обширными познаниями в ней, как этот любитель».

Основные результаты Ольберса посвящены наблюдениям комет (он открыл их 7 штук) и расчетам их орбит (им разработан метод определения орбит комет по трем наблюдениям). В 1802 году Ольберс переоткрыл первую малую планету (Цереру)[8], которая вскоре после ее открытия в 1801 году итальянским астрономом Пиацци была потеряна. В том же 1802 году он открыл вторую малую планету (Палладу), а в 1807 — четвертую (Весту).

В 1823 году, почти через 80 лет после работы Шезо, Генрих Ольберс опубликовал статью «О прозрачности пространства». В своей статье Ольберс анализирует фотометрический парадокс — более пространно и в более качественном стиле по сравнению с кратким изложением Шезо — и предполагает, что учет поглощения света далеких звезд в межзвездном пространстве может решить эту проблему.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука