Читаем Почему небо темное. Как устроена Вселенная полностью

Сколько во Вселенной «обычного» и «темного» вещества? О количестве (или о плотности) вещества в космологии принято говорить в терминах так называемой критической плотности. Критическая плотность зависит от современного значения постоянной Хаббла ( H 0) – ρс = 3 H 02 / 8 πG  ~ 10-29 г/см3. В рамках стандартной фридмановской космологии, если средняя плотность Вселенной превышает это значение, то есть ρ > ρс, то расширение Вселенной должно смениться ее сжатием («закрытая Вселенная»). Если ρ < ρс, то расширение будет продолжаться вечно («открытая Вселенная»). Случай ρ = ρс, является пограничным – расширение будет продолжаться вечно, причем скорость расширения будет асимптотически стремиться к нулю. При ρ = ρс, геометрия Вселенной является плоской, ее пространственная кривизна равна нулю. В остальных случаях геометрия пространства неевклидова. При плотности, меньшей критической, кривизна пространства отрицательна, при большей – положительна.

Оценить плотность заключенного в звездах обычного вещества довольно просто. Основной источник оптического излучения во Вселенной – это состоящие из звезд галактики. Поэтому можно построить распределение галактик по их светимостям и пересчитать его в распределение по массам, задав отношение масса – светимость ( M/L ). Отношение M/L для звезд разных типов можно найти как из наблюдений, так и из теории, и оно хорошо известно. (Например, для звезд типа нашего Солнца отношение массы к болометрической светимости в системе единиц СГС равно 0.5.) Просуммировав массы галактик в единице объема Вселенной, находим полную массу звезд и, соответственно, плотность светящегося вещества. По современным оценкам плотность такого вещества составляет лишь примерно 0.3 % от критической плотности Вселенной: Ω* = ρ*/ρс ~ 0.003. Эта оценка нам пока мало о чем говорит, поскольку мы не знаем полную плотность вещества, – помимо звезд во Вселенной есть еще другое барионное вещество (например, газ) и, кроме того, небарионная темная материя.

Полную плотность барионного вещества помогает найти теория первичного нуклеосинтеза, начало развития которой было положено Гамовым и его учениками. Оказывается, предсказываемый теорией химический состав Вселенной довольно сильно зависит от полной плотности барионов. Особенно чувствительно к доле барионов первичное содержание дейтерия. Современные измерения первичного химического состава (доля водорода по массе ~75 %, гелия ~25 %, доля дейтерия по числу атомов относительно водорода ~ 10-5) дают независимую оценку полной плотности барионного вещества: Ωb = ρb / ρс ~ 0.045. Значит, в звездах заключена лишь примерно 1/15 доля всего барионного вещества Вселенной! Где же оно? По-видимому, существенная часть этих недостающих ба-рионов заключена в горячем газе скоплений галактик, а другая часть может быть отнесена к барионной скрытой массе, представляющей собой, например, межгалактический газ, остатки звездной эволюции (белые карлики, нейтронные звезды, черные дыры), холодный и труднодоступный для наблюдений молекулярный газ.

Теперь обсудим, сколько небарионного вещества во Вселенной. На рис. 36 суммированы результаты измерения отношения масса – светимость для галактик и их систем в зависимости от размера системы. На самых больших масштабах масса оценена на основе анализа крупномасштабных движений галактик, индуцированных гравитационным влиянием скоплений и сверхскоплений галактик, на меньших масштабах использованы динамические, а также найденные по наблюдениям горячего газа оценки масс скоплений и групп. На рисунке видно, что масса, приходящаяся на единицу светимости, сначала растет, а затем на масштабах ≥ 102 кпк выходит на плато. Выход на плато означает, что при увеличении масштаба усреднения во Вселенной не появляется значительного количества дополнительной скрытой массы.

Перейти на страницу:

Похожие книги