Читаем Почему небо темное. Как устроена Вселенная полностью

В 1990-х годах несколько ученых попытались реанимировать Λ-член. Впрочем, о нем никогда, по сути, и не забывали, но он в качестве своего рода курьеза оставался на периферии внимания физиков. В 1995 году американские астрофизики Иеремия Острайкер и Пол Стейнхардт проанализировали разнообразные наблюдательные факты о Вселенной – оценки ее плотности, возраста объектов, реликтовое излучение – и пришли к выводу, что все они согласуются с ненулевой космологической постоянной, вклад которой в плотность Вселенной ΩΛ = 0.65±0.1. Суммарная плотность Вселенной таким образом получается близкой к 1, что и требуется инфляцией и данными о реликтовом излучении. К относительно большой оценке величины космологической постоянной пришел на рубеже 1990-х годов и Стивен Вайнберг. Он воспользовался антропными соображениями (см. раздел 2.8) и заключил, что наблюдаемые свойства нашей Вселенной свидетельствуют о том, что вклад космологической постоянной может заметно превышать плотность обычной материи.

Были и другие исследователи, обсуждавшие возможность ненулевой космологической постоянной, но эти работы не привлекли в то время особого интереса. Тем большей неожиданностью для большинства физиков стало открытие в 1998 году двумя группами исследователей ускоренного расширения Вселенной, означавшего, что Λ > 0.

Формальная история этого открытия началась в 1988 году, когда под руководством Сола Перлмуттера (рис. 37) и Карла Пеннипакера в Национальной лаборатории Лоуренса в Беркли (США) была создана группа (ее сокращенное название SCP – Supernova Cosmology Project), основной целью которой было определение космологических параметров Вселенной по наблюдениям далеких сверхновых типа Ia (см. раздел 2.2) [24] .

Основная идея этого проекта состояла в том, что SN Ia обладают замечательным постоянством в максимуме блеска (см. рис. 23) и поэтому их можно использовать в качестве «стандартных свечей» – объектов, истинная мощность излучения которых известна, и которые, тем самым, можно использовать для точных оценок расстояний. Если пронаблюдать кривую блеска далекой сверхновой и найти ее видимую звездную величину в момент максимума блеска, то, сравнив эту величину с истинной светимостью, можно сразу найти расстояние до звезды. С другой стороны, расстояние до этой же звезды можно оценить по ее красному смещению и по задаваемой космологической модели. Сопоставив данные для множества сверхновых в широком диапазоне z , можно с разумной точностью оценить основные параметры Вселенной – значение постоянной Хаббла, плотность вещества, кривизну пространства.

Для того чтобы использовать сверхновую для космологических целей, нужно решить три наблюдательные задачи: 1) нужно ее обнаружить, 2) получить спектр и убедиться, что она относится к типу Ia, 3) построить кривую блеска, чтобы с хорошей точностью оценить ее блеск в максимуме. Открыть сверхновую можно и на небольшом телескопе, так как в максимуме блеска она может затмить излучение целой галактики, но вот для дальнейшего изучения потребуются крупные инструменты. И тут встает основная проблема – наблюдательное время на больших телескопах заказывается на полгода – год вперед, но ведь заранее никак не предугадать, когда же вспыхнет та сверхновая, для изучения которой этот инструмент понадобится! Блеск сверхновой нарастает очень быстро – если повезет, то до максимума блеска у наблюдателей есть лишь 1–2 недели, – и организовать за это время наблюдения на крупном телескопе почти невозможно.

Для решения этой проблемы Сол Перлмуттер предложил следующую стратегию. Вскоре после новолуния (Луна, засвечивая небо, делает невозможным наблюдения слабых далеких объектов) на относительно небольшом телескопе получают снимки нескольких десятков площадок на небе, включающих изображения множества галактик. Для увеличения числа объектов лучше наблюдать далекие скопления галактик. Затем, в начале следующего новолуния, то есть примерно через 3 недели, эти области снова наблюдают и с помощью автоматических процедур, сравнивающих изображения, выделяют появившиеся за это время точечные объекты. После исключения возможных дефектов изображений и следов космических частиц остаются кандидаты в сверхновые звезды. Эти кандидаты тут же начинают исследовать на крупном телескопе, время на котором было заранее заказано на нужные даты. Такой подход позволяет почти гарантированно, «по заказу» открывать новые сверхновые, причем, чем больше галактик попало в исследуемую область неба, тем больше вероятность открыть сверхновую.

Перейти на страницу:

Похожие книги