Более того, они верят, что общаются с этим миром с помощью чего-то вроде экстрасенсорного восприятия. Математиков, принимающих эту иллюзию, называют платонистами, поскольку их математические небеса напоминают совершенный мир, описанный Платоном в его «Государстве». Геометры, замечает Платон, рассуждают об окружностях, которые идеально круглы, и бесконечных, совершенно прямых линиях. Однако такие идеальные сущности невозможно отыскать в мире, который мы воспринимаем через наши органы чувств. То же самое Платон считал верным в отношении чисел. Число 2, например, должно состоять из пары совершенно одинаковых единиц, но в реальном мире никакие две вещи не являются совершенно одинаковыми. Платон приходит к выводу, что объекты рассуждений математиков должны существовать в другом мире, вечном и идеальном, и современные математики – последователи Платона с этим согласны. Среди наиболее известных платонистов можно назвать Алена Конна, заведующего кафедрой анализа и геометрии в Коллеж де Франс, который утверждает, что «существует независимая от человеческого ума, неизменяемая математическая реальность»111
. Другой современный платонист Рене Том, прославившийся в 70-е годы как создатель теории катастроф, провозгласил: «Математики должны набраться смелости выразить свои глубочайшие убеждения и таким образом заявить, что математические формы действительно существуют независимо от ума, их изучающего»112.Вполне естественно, что платонизм столь привлекателен для математиков: он утверждает, что изучаемые ими сущности не просто изобретения человеческого ума – математические понятия открываются, а не изобретаются. Математики подобны провидцам, вглядывающимся в платоновский космос абстрактных форм, невидимый для прочих смертных. Один из самых ярых сторонников платонизма, великий логик Курт Гедель, утверждал, что «мы в самом деле обладаем чем-то вроде восприятия» математических объектов, «несмотря на их отдаленность от сенсорного опыта»113
. И Гедель был вполне уверен, что платонический мир, будто бы воспринимаемый математиками, вовсе не является коллективной галлюцинацией. «Я не вижу причины меньше доверять этому виду восприятия, то есть математической интуиции, чем чувственному восприятию», – заявил он. (Гедель также верил в существование привидений, но это уже другой вопрос.)Многих физиков тоже привлекают взгляды Платона. Математические сущности не только кажутся существующими (вечными, реальными, неизменными), они также выглядят повелителями физической Вселенной. Как еще можно объяснить то, что физик Юджин Вигнер назвал «невероятной эффективностью математики в естественных науках»114
? Математическая красота раз за разом оказывалась надежным показателем физической истины, даже в отсутствие эмпирических свидетельств. «Истину можно распознать по ее красоте и простоте, – говорил Ричард Фейнман. – Когда вы нашли красивое решение, совершенно очевидно, что оно верно»115. Если, выражаясь словами Галилея, «книга природы написана языком математики», то это может означать лишь то, что мир в самой своей основе математический. Как образно выразился астроном Джеймс Джинс, «Бог – математик»116. Правда, для благочестивого платониста подобная ссылка на Бога всего лишь излишний поэтизм. Кому нужен создатель, если математика сама по себе вполне способна породить Вселенную и обеспечить ее существование? Математика выглядит чем-то реальным, а мир кажется математическим. Может ли математика дать нам ключ к тайне бытия? Если, как утверждают платонисты, математические сущности в самом деле существуют, то они существуют необходимо, целую вечность. Возможно, это вечное математическое изобилие каким-то образом изливается в физический космос, который настолько сложен, что породил разумные существа, способные установить контакт с платоновским миром идей, породившим все сущее. Это заманчивая картинка, но может ли принять ее всерьез кто-то, кроме поедателей листьев лотоса?