Читаем Под знаком кванта. полностью

Оглядываясь назад, трудно удержаться от мысли, что α-распад — значительно более простое явление, чем извержение вулкана, и лишь предрассудок о заведомой трудности и непонятности квантовой механики мешает признать это сразу. В самом деле, никому еще не удалось предвидеть, когда проснется вулкан и сколько камней он при этом выбросит. А свойства α-распада мы можем предсказать вполне надежно.

Объяснение радиоактивности, столь просто и естественно следующее из основных представлений квантовой механики, произвело на современников исключительное впечатление. Снежный ком противоречивых гипотез и безнадежных вопросов, скопившихся за 30 лет вокруг явления радиоактивности, неожиданно распался. Резерфорд и Мария Кюри дожили до этого времени и могли видеть, как новое знание осветило путь, впервые пройденный ими ощупью, и объяснило смысл их гигантской работы, проделанной много лет назад со страстью и энтузиазмом юности.

С работы Гамова, Гёрни и Кондона берет начало современная ядерная физика. Именно они заставили поверить, что квантовая механика — это не узкоспециальная наука о строении

атомов и молекул (вначале ее так и называли: атомная механика), а наука о всех явлениях атомной и ядерной физики. (По прихоти судьбы Эдвард Кондон родился в том самом году, когда Резерфорд и Содди впервые поняли природу радиоактивности, в местечке Аламогордо на краю той самой пустыни, где 43 года спустя взметнется пламя первого атомного взрыва.)

ЭФФЕКТИВНЫЕ СЕЧЕНИЯ РЕАКЦИИ

Мы хорошо представляем теперь, как α-частицы вылетают из радиоактивного ядра. Сталкиваясь с ядрами других элементов, они могут вызвать ядерную реакцию, то есть проникнуть внутрь ядра. Квантовая механика позволяет вычислить вероятность и таких процессов. Например, она может объяснить, почему только одна α-частица из 300 000 вызывает знаменитую реакцию Резерфорда

α + 14Ν →17O + p.

Чтобы привыкнуть к терминам, которые при этом используются, полезно на время освободиться от гипноза слова «квантовый» и рассмотреть более простой процесс. Представьте себе увеличенную модель кристалла, подобную изображенной на рисунке (в каждой школе такая наверняка найдется). Пусть в каждом кубическом сантиметре такого «кристалла» содержится n0 «ядер» с радиусом r0, длина «кристалла» равна l, площадь его торца — S, и мы в этот торец стреляем из дробовика, причем скорость дробинок равна υ. Площадь поперечного сечения одного «ядра» σ0 = πr02, а площадь сечения всех «ядер» в объеме «кристалла» равна σ0n0Sl, то есть произведению σ0 на общее число ядер n0Sl в объеме кристалла Sl. Пролетая через кристалл, дробинка попадет в любое из ядер с вероятностью

которая равна отношению суммарной площади σ0n0Sl геометрического сечения всех «ядер» в объеме «кристалла» к площади S его торца. Вероятность попадания в единицу времени после этого легко вычислить, поделив полученную величину на время t = l/υ пролета дробинок через кристалл, то есть

вероятность попадания в единицу времени = w = σ0υn0.

Таким образом: если каждую секунду со скоростью υ (см/с) через площадь в 1 см2 пролетает одна дробинка, то с вероятностью w=σ0υn0 она попадет в одно из «ядер».

Эта очень важная формула справедлива и в квантовой механике, только под σ0 там надо понимать не геометрическое сечение ядра σ0=πr02, а некоторое другое, «эффективное сечение», которое может быть как меньше, так и больше геометрического,— в зависимости от вида реакции, которую мы изучаем. Например, если мы интересуемся только теми столкновениями дробинок с «ядрами», при которых последние раскалываются, то ясно, что число таких столкновений всегда меньше, чем число простых попадании.

Это уменьшение можно учесть с помощью некоторого коэффициента после чего прежняя формула примет вид

w=wfσ0υn0=συn0.

Величину σ=wfσ0 называют эффективным сечением реакции. При желании его можно представить себе наглядно, как некую «работающую» часть геометрического сечения ядер. Полезнее, однако, помнить его истинный физический смысл: эффективное сечение или просто сечение — это мера вероятности ядерной реакции, которую оно характеризует.

В ядерной физике сечения принято измерять в специальных единицах барнах:

1барн =1б=10-24 см2.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература