Читаем Под знаком кванта. полностью

Барн — это английское слово «barn», то есть «амбар». Очевидная несообразность этого термина объясняется историей его происхождения. Во время войны все работы по делению урана в Америке были строго засекречены. Поэтому даже в секретных отчетах писали не 23592U или 23994Pu, а элемент-25 и элемент-49 — по последним цифрам атомного номера и массового числа элементов. Точно так же значения сечений ядерных процессов сообщали в засекреченных единицах площади — «барнах». «Потому что, — объясняли физики, предложившие этот термин, — в ядерной физике сечение 10-24 см2 — такая же большая величина, как амбар в обычной жизни». Но, несмотря на грустную анекдотичность своего происхождения, термин этот прижился. За единицу измерения сечений барн выбран, конечно, не столь случайно, как слово для его обозначения. Радиусы ядер меняются от r0= 0,13·10-12 см (для водорода) до r0=0,8·10-12 см (для урана), и, следовательно, их геометрические сечения σ0=πr02 заключены в пределах от 0,05 до 2,1 барн, то есть соизмеримы с выбранной единицей сечения.

До сих пор мы молчаливо предполагали» что эффективные сечения реакций не зависят от энергии налетающих частиц. Можно подозревать, что это — очень грубое допущение, и опыт подтверждает наше сомнение. В действительности эффективные сечения очень прихотливо зависят от энергии столкновений, а для разных реакций могут различаться в десятки, тысячи и миллионы раз. Одна из заслуг квантовой механики состоит как раз в том, что она дает способ вычислить эти сечения и тем самым определить относительную вероятность различных ядерных реакций. Из формул квантовой механики следует также, что эффективное сечение упругого рассеяния ядер не равно их геометрическому сечению. Это — важное утверждение, и мы к нему еще вернемся.

НЕЙТРОННЫЕ СЕЧЕНИЯ

Судьбу атомной энергии решили эффективные сечения взаимодействия нейтронов с ядрами, или, коротко, нейтронные сечения. В этом утверждении нет преувеличения ради эффекта: действительно, от ошибки в их определении зависели иногда судьбы целых народов. В 1939 г. Германия приняла решение о производстве атомной бомбы. Для осуществления этой цели, как мы вскоре узнаем, необходимо было знать сечение поглощения нейтронов ядрами углерода. Его измерение поручили нобелевскому лауреату Вальтеру Боте, чьи эксперименты в свое время немало способствовали открытию нейтрона. И он ошибся. В десять раз (и вряд ли намеренно, как хотелось бы думать впоследствии многим). В результате было принято решение строить атомный котел на тяжелой воде, которую приходилось ввозить из Норвегии, где завод, ее производивший, вскоре взорвали патриоты... Судьба германского уранового проекта была тем самым предрешена.

В отличие от α-частиц нейтрон лишен электрического заряда и всегда притягивается короткодействующими ядерными силами. Поэтому с точки зрения нейтрона ядро — это не вулкан, а воронка, которую он может с ходу проскочить, а может и застрять в ней. В рамках этой аналогии легко поверить, что быстрому нейтрону «ядерную воронку» проскочить легче, чем медленному. Это и в самом деле верно: для

нейтронов с энергией 1 МэВ или больше сечения ядерных реакций примерно совпадают с геометрическими сечениями ядер; однако при меньших энергиях столкновения эффективные сечения ведут себя весьма причудливо.

На рисунке приведены сечения поглощения нейтронов ядрами кадмия и урана. При малых энергиях (E<100 эВ) они очень велики: 10 000 барн и более. Такие всплески называют резонансами в сечениях реакций. Кроме того, глядя на графики, можно заметить, что при очень малых энергиях нейтронов Ε<1 эВ (их называют тепловыми, поскольку средняя энергия движения атомов при комнатной температуре = 20°С равна примерно 0,04 эВ) сечения начинают резко и монотонно возрастать. Чтобы понять все эти особенности нейтронных сечений, необходимо вновь вспомнить о квантовой природе ядерных реакций и, в частности, о волновых свойствах нейтрона.

Уже в 1936 г., через четыре года после открытия нейтрона, Вальтер Эльзассер (еще до создания квантовой механики он указал на волны де Бройля как на причину аномалий в опытах Джермера) предсказал, что нейтрону, как и электрону, должны быть присущи волновые свойства. В том же году Петер Прейсверк (1907—1972) и Ханс Халбан (1908—1964) в Институте радия в Париже подтвердили экспериментально его предсказание. Масса нейтрона mn= 1,67·10-24 г, при энергии 1 эВ его скорость υ=1,4·106 см/с, а соответствующую длину волны легко вычислить по формуле де Бройля:

Если, как обычно, за «радиус» квантовой частицы принять величину r0=λ/2π, то при энергии 1 эВ «радиус нейтрона» r0≈4·10-10 см, то есть в 500 раз превышает радиус ядра урана.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература