При любых изменениях в обратимом мире эксергия остается постоянной. Необратимые процессы — вот истинные «пожиратели эксергии», непрерывно уменьшающие ее запас. Это наводит на мысль, что между эксергией, которая уменьшается в необратимых процессах, и энтропией, которая в них увеличивается, есть какая-то связь. Такая связь действительно существует, но только в тех случаях, когда происходит возрастание энтропии вследствие необратимого процесса. Скажем, подводя обратимо теплоту к телу, мы увеличиваем его энтропию, но эксергия не меняется. Если же нагревать предмет необратимо — энтропия возрастает, а эксергия уменьшается. Следовательно, уменьшение эксергии связано не вообще с увеличением энтропии, а лишь с увеличением энтропии в необратимых процессах.
Понятие эксергии избавляет нас от необходимости каждый раз сравнивать реальный механизм с точно таким же и работающим в таких же условиях идеальным. Теперь достаточно эксергию на выходе из механизма разделить на эксергию на входе, чтобы получить КПД. Этот КПД для всех машин, в том числе и тепловых, меньше единицы, и чем он ближе к единице, тем меньше отличается механизм от идеального.
Эксергия вносит ясность в понимание работы тепловых машин, она реабилитирует некоторые части тепловых установок и находит истинных виновников потерь. Например, долгое время считалось, что главные потери паровой установки — это теплота, отдаваемая в конденсаторе охлаждающей воде. И действительно, в конденсатор уходит почти половина теплоты, полученной рабочим телом в котле. Котел, наоборот, считался самой экономичной частью установки: КПД, подсчитанный по энергии, получался 96–98 %. Но стоило проследить, что происходит с эксергией, и стало ясно: конденсатор надо реабилитировать, это одна из самых экономичных частей установки, в которой эксергия уменьшается всего на 3 %. И это понятно, температура в конденсаторе всего на несколько градусов выше температуры окружающей среды. Истинный же виновник потерь — котел.
В раздельном существовании топлива и кислорода запасено некоторое количество эксергии. Если провести реакцию окисления обратимо, с помощью идеального топливного элемента, мы не уменьшим этого первоначального количества эксергии. Если же мы сожжем топливо, то эксергия уменьшится. Насколько? Это зависит от температуры получившихся газов. В топке котла температура бушующего факела достигает 1500–1800 °C, а температура пара перед турбинами в лучшем случае достигает всего 600 °C. Теплообмен с перепадом в 900— 1200 °C — вот второй источник потерь в котле. А в общей сложности котел «пожирает» около половины эксергии. Теперь мы новыми глазами можем взглянуть на тепловые машины. Эксергия показывает нам, что всюду, где существуют большие перепады температур, таятся источники потерь: в котлах, в цилиндрах двигателей внутреннего сгорания, между нагретыми газами и охлаждаемыми водой стенками цилиндра, в камерах сгорания газовых турбин. Теперь нам нетрудно понять, сколь расточительно и убыточно печное отопление: при сгорании дров температура 800 °C, а в комнате надо поддерживать 25 °C. Не удивительно, что тепловые насосы имеют немалые перспективы на будущее.
Эксергетический анализ подсказывает и пути устранения потерь в тепловых машинах: разницу температур между теплообменивающимися средами надо всемерно уменьшать. Можно, например, подогревать воздух, идущий в камеру сгорания, за счет выхлопных газов. Тогда перепад температур между факелом и воздухом получится меньше, следовательно, КПД увеличится. Такой прием называют регенерацией. Впервые примененный в прошлом веке шотландцем Стирлингом и шведом Эриксоном, этот способ нашел широкое применение в паровых и газотурбинных установках. Но наибольший успех выпал на долю двигателей Стирлинга и Эриксона с регенераторами в наши дни. Оказалось, что такие двигатели в принципе имеют такую же экономичность, как и двигатели Карно. Однако они не требуют чрезмерно высоких давлений, сравнительно невелики и легки, и именно поэтому к ним во многих странах проявляется повышенный интерес.
Итак, эксергия позволила устранить противоречия и трудности, с которыми столкнулись, говоря о КПД тепловых машин.