Иногда уровень радиоактивности в реакторе становится настолько высоким, что он может достичь критической массы и при наличии быстрых нейтронов. В этом случае реактор выходит из-под контроля. В течение нескольких секунд он ничем не отличается от атомной бомбы. Но вместо продолжительной ядерной реакции энергия разрывает реактор на куски — это можно назвать «быстрым критическим распадом». В результате радиоактивные частицы разлетаются по окрестностям, заражая этот район, но, скорее всего, мощности взрыва недостаточно для того, чтобы стереть с лица земли целый город — по крайней мере, в большинстве случаев.
Хотя теория вероятности и второй закон термодинамики «не позволят» реактору взорваться подобно бомбе, вероятность такого поворота событий существует.
Вода, которая циркулирует через реактор к паровым котлам, а затем к рециркуляционным насосам реактора, а потом снова в реактор, называется основным охладителем. Он «основной», потому что он циркулирует в радиоактивной петле, что в свою очередь является одной из составных частей ядерного реактора.
Он отличается от «вторичного» охладителя, которым является пар, вырабатываемый паровыми котлами, чтобы поддерживать низкий уровень радиоактивности в машинном отделении. Эта жидкость не совсем охладитель — она не охлаждает реактор, потому что её задачей является поддержание рабочей температуры на отметке 315 °C. Точнее было бы назвать эту жидкость «переносчиком тепла». Она отводит тепло от реактора для использования в паровых генераторах. Тем не менее, быстрее сказать «охладитель», чем «жидкость для отвода тепла».
В корпусе реактора имеются два впускных патрубка, через которые поступает вода. Затем холодная вода попадает во впускной пленум, чтобы поступающая вода равномерно распределялась по дну реактора. Поступающая вода относительно «холодная» (после того, как паровые котлы забрали энергию из воды, она становится относительно холодной: её температура около 238 °C, что ниже 260 °C — температуры выходящей из реактора воды).
По мере того, как вода проходит вдоль внутренней стенки, она забирает тепло, выработанное в результате реакции.
Внутреннее покрытие стенок реактора является ограничивающим компонентом, потому что оно поглощает настолько много радиации, что его прочность снижается со временем. В то же время, результатом взаимодействия воды с цирконием является выделение водорода (вот почему проблемы в системе охлаждения становятся не только результатом парового, но и водородного взрыва). Наличие водорода вызывает ломкость металла.
Каждый раз, когда реактор разогревается или охлаждается, металл расширяется или сжимается. При повышении давления стенки реактора будут расширяться, а при понижении — сжиматься, что может привести к трещинам в металле.
Вдобавок ко всему, нужно осознать, что внутренняя поверхность реактора испытывает наибольшее давление. (Представьте себе ствол орудия: металл с внутренней стороны ствола испытывает на себе гораздо большие нагрузки, чем металл снаружи ствола).
Поэтому внутреннее покрытие в данном случае является ограничивающим фактором, когда вы разогреваете или охлаждаете реактор. Вы же не хотите, чтобы в стенках образовались трещины в результате усталости металла и чтобы стенки реактора разлетелись на сотни мелких кусочков, когда вы попытаетесь разогреть его.
Холодная вода поступает в пленум, представляющий собой циркониевую тарелку с тысячами мелких просверленных отверстий. Вы можете промывать в ней макароны, как в дуршлаге, жаль, что он радиоактивный. Эти отверстия направляют поток воды к топливным модулям.
Это очень важно, потому что если один топливный элемент испытывает недостаток в притоке воды, то он может перегреться и расплавиться. Отказ топливного элемента является причиной утечки радиоактивных продуктов распада на судне.
Вода на выходе из топливных элементов поднимается под действием давления рециркуляционных насосов реактора через топливные модули, которые представляют собой циркониевые трубки с циркониевыми пластинами внутри. Вокруг пластин есть проход, через который течет вода. Внутри топливных пластин находятся небольшие керамические шарики с ураном и другие керамические сферы с горючим ядом.
Вода течёт по проходам в топливных модулях. Во время распада в топливных модулях уран отдает тепло. Охлаждающая жидкость поглощает тепло. Если она перестанет двигаться по трубопроводам, топливные модули продолжают отдавать тепло, и вода начинает кипеть. Пар плохо поглощает тепло, поэтому цирконий начинает плавиться и «выпускать» уран и высокорадиоактивные продукты распада в окружающую среду.