Читаем Погода – Климат – Человек полностью

Количество и относительное значение климатических переменных менялись по мере развития научных исследований в этой области. Сегодня в центре внимания находятся уже другие переменные, и число их существенно возросло. Если раньше ученые в изучении климата опирались на сравнительно обособленные наблюдения отдельных переменных, то сегодня климатологи пытаются включить в интегрированный исследовательский подход как можно больше различных переменных, чтобы лучше понять климатическую систему в целом, т. е. учитывая все факторы – океаны, морские льды, биосферу и тому подобное.

В позапрошлом столетии границы климатических исследований в значительной степени зависели от технических возможностей установки измерительных метеорологических приборов. В 1920-х годах появилась возможность с помощью шаров-зондов, воздушных змеев, самолетов и радиозондов вести наблюдения на различной высоте. К слову, в процессе этих наблюдений в начале 1920-х годов была открыта стратосфера. Восхождения в горы и небезопасные полеты на воздушном шаре показали, что температура при подъеме на 100 м понижается где-то на 0,7 °С. На основании этого наблюдения Герман фон Гельмгольц (1821–1894) сделал вывод, что на высоте около 30 метров должен быть достигнут абсолютный ноль (–273 °С). Когда после первых измерений с помощью беспилотных воздушных шаров стало ясно, что после достижения 11-километровой высоты начинается зона постоянной температуры, многие метеорологи вначале усомнились в правильности измерений, но это была граница между тропосферой и стратосферой.

Лишь совершенно новые методы наблюдения привели к кардинальным переменам в климатологии, которая на протяжении вот уже нескольких десятилетий является не географической дисциплиной, а, скорее, физикой и химией окружающей среды. Неудивительно, что подобные тенденции вдохновили в первую очередь молодых метеорологов и что именно они, в свою очередь, способствовали смене парадигмы1. В следующем разделе мы рассмотрим концепцию климата в этой «новой» климатологии.

3.2. Климат как естественнонаучная система

Чтобы показать разницу между описательной климатологией, основанной на географической традиции, и новыми, физико-климатическими исследованиями, мы для начала, в качестве примера типично «физического подхода» в метеорологии, рассмотрим парниковую теорию шведского химика Сванте Аррениуса (1859–1927). Сегодня многие ученые считают Аррениуса первооткрывателем парникового эффекта. Как это всегда бывает в науке, споры о том, кто «действительно первым» открыл, сформулировал, изобрел и так далее, совершенно бессмысленны. В действительности в науке одновременно и независимо друг от друга совершаются открытия, которые затем могут стать причиной спора о первенстве. Если смотреть еще шире, то, как правило, всегда можно найти кого-то другого, кто высказывал схожие идеи прежде или, по крайней мере, двигался в том же направлении. Аррениус в создании своей парниковой теории тоже опирался на достижения великих предшественников. Одним из них был французский математик Жан Баптист Жозеф Фурье (1768–1830). Но в конечном итоге современную теорию парникового эффекта разработал именно Аррениус, так что сегодня его первенство общепризнано. (Открытие и описание парникового эффекта Аррениусом отмечалось и обсуждалось в свете последних исследований в февральском номере журнала AMBIO за 1997 год).

В конце XIX века физики и химики активно обсуждали вопрос о том, какие факторы влияют на температуру в приземных слоях атмосферы. Этот вопрос возник в связи с новым научным знанием о ледниковом периоде, господствовавшем на Земле много тысяч лет назад, и с пониманием того, что приземная температура, по-видимому, неоднократно и существенно менялась на протяжении истории Земли. Аррениус, получивший впоследствии Нобелевскую премию по химии за другие свои достижения, утверждал, что приземная температура, а, следовательно, и температура воздуха достигает в точности того значения, при котором длинноволновое излучение Земли равно коротковолновому солнечному излучению. Если они не равны, то температура понижается или повышается до тех, пока не будет достигнут этот баланс. Согласно закону Стефана-Больцмана, длинноволновое излучение пропорционально 4-й степени температуры.

Перейти на страницу:

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука