Теперь мы совершим небольшой экскурс в статистику.
Под случайным процессом мы будем понимать процесс, порождающий числовые ряды, значения которых соответствуют случайному распределению. Наиболее известным является гауссово распределение. Оно сообщает нам, с какой вероятностью переменная принимает то или иное возможное значение. Такие распределения можно описать при помощи нескольких характерных величин – среднего и среднеквадратического отклонения.
Среднее значение есть арифметическое среднее всех наблюдений, т. е. в большинстве случаев половина всех полученных в ходе наблюдений результатов ниже среднего, а другая половина – выше1
. Годовой и суточный ход на рисунке 1 представляет собой как раз среднюю величину (рассчитанную для каждого календарного месяца / каждого часа в отдельности).Среднеквадратическое отклонение или его квадрат (дисперсия) показывает меру разброса случайных величин. В двух третях всех случайных выборов мы попадаем в интервал «среднее значение ± среднеквадратическое отклонение», а в одной трети случайных выборов мы получаем значения больше или меньше, чем «среднее значение ± среднеквадратическое отклонение». Частота подобных существенных отклонений от среднего значения измеряется с помощью перцентилей. Перцентиль 90% больше, чем 90% всех наблюдений, перцентиль 10% меньше, чем 10% всех наблюдений. Если в нашем числовом ряду речь идет о максимальной скорости ветра в течение года, то перцентиль 99% описывает максимальную скорость ветра, которая была превышена в среднем один раз в сто лет.
Случайность не означает, что следующие друг за другом числовые показатели абсолютно не зависят друг от друга. Скорее, здесь – именно в климатологическом контексте – мы наблюдаем такую ситуацию, когда значение климатической переменной в какой-то момент времени частично определяется предшествующим моментом времени: «Завтра погода будет в сущности такой же, как сегодня». Отсюда следует, что значение переменной в послеследующий момент времени все еще будет частично детерминировано настоящим значением, однако чем дальше мы продвигаемся по шкале, тем меньше будет эта детерминированность. Так что значение, которое переменная примет через большой промежуток времени, не будет иметь ничего общего с нынешним значением. Отсутствие связи между ними можно понимать таким образом, что, случайным образом изменив последовательность ряда, мы никак не изменим характер этого ряда. Последовательную детерминацию можно понимать как память случайного процесса.
На практике мы не встретим ни распределений, ни памяти в этом смысле. Поэтому характерные величины приходится выводить из наблюдений. И тогда встает вопрос: сколько нужно провести наблюдений, чтобы полученные результаты имели смысл? Если мы будем наблюдать за температурой в течение двадцати лет и рассчитаем среднее значение для первых и последних десяти лет, то эти средние значения будут различаться. Чтобы результаты были репрезентативными, разница не должна быть слишком большой.
Рис. 10. Распределение тайфунов в Восточной Азии в 1994 (сравнительно большое количество тайфунов – 36) и в 1998 году (очень небольшое количество тайфунов – 16).
Цвета отображают различную силу тайфунов.
Источник: http://agora.ex.nii.ac.jp/digital-typhoon.
Так как в отношении климатических условий нет точных или «очевидных» временных границ для определения статистических показателей, приходится полагаться на некие конвенции или стандарты, задающие эти границы. В метеорологии существует стандартный интервал в 30 лет. На Международной метеорологической конференции, проходившей в 1957 году в Вашингтоне, был подтвержден этот временнoй норматив, принятый еще в 1935 году на аналогичной научной конференции в Варшаве. За «климатический эталон» был взят период с 1931 по 1960 год (до этого – с 1901 по 1930 год). Таким образом, наблюдения, результаты которых впоследствии усредняются, подчиняются четкому стандарту, обязательному для всех метеорологических служб. Нормой считается среднее значение именно за 30, а не за 20 или 15 лет. Впрочем, в научных климатологических исследованиях этот стандарт уже не играет никакой роли, с тех пор как стало ясно, что климат существенно варьируется и на шкале, охватывающей 30 лет и более.
Теперь мы можем рассчитать характерные величины для различных климатических переменных и различных мест наблюдения, а затем, перенеся соответствующие значения на соответствующие территории, представить ученым и широкой общественности информацию о климате в форме карт.
На рисунке 10 мы видим две карты, на которых показана траектория и интенсивность восточноазиатских тайфунов в 1993 (максимальное число тайфунов) и 1998 году (минимальное число тайфунов). Над северной частью Тихого океана образуются циклоны. Большинство из них затем движутся на запад, к азиатскому побережью. Очевидно, что количество тайфунов сильно варьируется в зависимости от года.