Читаем Пока алгебра не разлучит нас полностью

ВЕЙЛЬ: По мере работы над книгой мы поняли: чтобы заложить надежную основу дифференциального и интегрального исчисления, требовалось пересмотреть все основные понятия математики, начиная с простейших. Наши предшественники довольствовались бы тем, что изложили в нескольких главах весь необходимый материал, но для того чтобы достичь невообразимых высот математики нашего времени, нескольких глав было недостаточно. Отмечу, что математика в достаточной мере подчиняется тезису Томаса Куна о структуре научных революций. В период с конца XIX до первой трети XX века произошла смена парадигмы: в это время возникли теория множеств Кантора, общая топология Хаусдорфа, алгебраическая топология Пуанкаре и Лефшеца, появились Гильбертовы пространства и современная алгебра, создателями которой можно назвать Нётер, Артина и ван дер Вардена.

18

Все новые теории зарождаются одинаково: все начинается с анализа множества примеров, которые рассматриваются независимо друг от друга, а затем некто, подобно первым натуралистам, классифицирует эти примеры на основе наиболее заметных схожих черт. Только в ходе подробного исследования проявляются скрытые свойства, причем некоторые из них становятся очевидными далеко не сразу. Конечной целью Бурбаки в итоге стал поиск основных составляющих всей математики.

ЛЕВИ-СТРОСС: ...чтобы наступил этап, который Кун называл «нормальной наукой».

ВЕЙЛЬ: Труднее всего было организовать работу. Сперва мы регулярно встречались в парижских кафе, но вскоре этих встреч стало не хватать, и мы решили провести вместе две недели летних каникул в каком-нибудь приятном месте, чтобы вывести математику на свежий воздух.

Первый симпозиум состоялся в 1935 году в местечке Бессе в Оверни, где располагалось несколько корпусов Клермонского университета. Следующая встреча должна была пройти в Эскориале, но нам помешала гражданская война в Испании. В итоге мы собрались в доме семейства Шевалле в Шанже, однако встреча по-прежнему называлась Эскориальским симпозиумом.

К каждой встрече члены группы готовили доклады на различные темы, которые позднее должны были войти в книгу. На встречах мы читали эти доклады, составляли планы отдельных томов и связывали различные главы с теми, что уже были опубликованы или только готовились к публикации. Затем начиналась редактура. Мы постановили, что книгу можно будет считать законченной только тогда, когда за это единогласно проголосуют все члены группы. Порой одна и та же рукопись переписывалась бесчисленное множество раз, и на работу ушло более пяти лет, поскольку всегда находился кто-то недовольный результатом. Я и сегодня не могу поверить, что в 1939 году мы завершили работу над сорокастраничной брошюркой, где излагались основы наивной теории множеств, и даже нашли издателя.

ЛЕВИ-СТРОСС: А почему вы назвали теорию множеств «наивной»? Очередная шутка?

ВЕЙЛЬ: Разумеется. Девиз, под которым группа Бурбаки начала свой труд по унификации математики, звучал так: «поставить аксиоматический метод на службу идеологии структур». Об идеологии структур мы поговорим чуть позже.

Если говорить о методе, то мы решили использовать в качестве основы теорию множеств, которая, несмотря на парадоксы, обнаруженные в ней в начале века, в то время пребывала в добром здравии. Следовательно, первый шаг на пути к формализации математики состоял в том, чтобы подробно описать все обозначения и синтаксис теории множеств.

Эта задача была посложнее любого из подвигов Геракла — перед нами был пример Рассела и Уайтхеда, которые работали над «Началами математики» десять лет подряд по 12 часов в день. Таким образом, если бы мы ввели достаточное количество аббревиатур и новых правил синтаксиса, то получили бы намного более практичный язык. Он не был бы формальным в строгом смысле этого слова, но был бы достаточно близок к формальным языкам, чтобы обладать идеальной четкостью. Именно в этом и заключалась «наивность» нашей теории множеств — разновидности стенографической записи идеального языка, не содержащего ни единого пробела.

Вскоре мы забросили формализованную математику, но во всех работах неизменно оставляли своего рода путеводные знаки, чтобы при необходимости вернуться к ней. Следует понимать, насколько мы были увлечены строгими обозначениями, не оставлявшими места риторике. В нашем линейном повествовании запрещались любые отсылки к другим источникам, и в результате вещественные числа впервые объяснялись на трехтысячной странице.

ЛЕВИ-СТРОСС: Не противоречат ли этому исторические заметки, согласно которым Бурбаки имел обыкновение начинать каждую книгу «с чистого листа»?

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги