Herron M. D. et al.
(2019) De novo origins of multicellularity in response to predation. Scientific Reports, 9, 2328. DOI: 10.1038/s41598-019-39558-8.Hoyal Cuthill J. F., Conway Morris S. (2014) Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan. Proceedings of the National Academy of Sciences of the USA,
111, 13122–6.Ivantsov A. Yu. et al.
(2016) Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia, 49, 540–54.Ivantsov A. Yu., Nagovitsyn A. L., Zakrevskaya M. A. (2019) Traces of locomotion of Ediacaran macroorganisms. Geosciences
, 9, 395. DOI: 10.3390/geosciences.9090395.Ivantsov A., Zakrevskaya M., Nagovitsyn A. (2019) Morphology of integuments of the Precambrian animals, Proarticulata. Invertebrate Zoology
, 16, 19–26.Ivantsov A. et al.
(2020) Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran). Journal of Paleontology, 94, 1019–33.Kenchington C. G., Dunn F. S., Wilby P. R.
(2018) Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures. Current Biology, 28, 3330–6, e2.Kolesnikov A. V. et al
. (2018) The oldest skeletal macroscopic organism Palaeopascichnus linearis. Precambrian Research, 316, 24–37.Kuzdal-Fick J. J., Foster K. R., Queller D. C., Strassmann J. E. (2007) Exploiting new terrain: an advantage to sociality in the slime mold Dictyostelium discoideum. Behavioral Ecology
, 18, 433–7.Laflamme M., Xiao S., Kowalewski M. (2009) Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the USA,
1060, 14438–43.Liu A. G. (2016) Framboidal pyrite should confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms. Palaios
, 31, 259–274.Liu A. G., McIlroy D., Matthews J. J., Brasier M. D. (2012) A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society of London
, 169, 395–403.Liu A. G., Dunn F. S. (2020) Filamentous connections between Ediacaran fronds. Current Biology
, 30, 1322–8.Luo C., Miao L. (2020) A Horodyskia-Nenoxites
-dominated fossil assemblage from the Ediacaran-Cambrian transition (Liuchapo Formation, Hubei Province): Its paleontological implications and stratigraphic potential. Palaeogeography, Palaeoclimatology, Palaeoecology, 545, 109635. DOI: 10.1016/j.palaeo.2020.109635.Mitchell E. G. et al.
(2015) Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature, 524, 343–6.Mitchell E. G. et al.
(2019) The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecology Letters, 22, 2028–38.Mitchell E. G. et al.
(2020) The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus, 10, 20190109. DOI: 10.1098/rsfs.2019.0109.Nagy L. G., Kovács G. M., Krizsán K. (2019) Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biological Reviews
, 93, 1778–94.Rahman I. A., Darroch S. A. F., Racicot R. A., Laflamme M. (2015) Suspension feeding in the enigmatic Ediacaran organism Tribrachidium
demonstrates complexity of Neopoterozoic ecosystems. Science Advances, 1, e1500800. DOI: 10.1126/sciadv.1500800.Reid L. M., García-Bellido D. C., Gehling J. G. (2018) An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata
population from Crisp Gorge, South Australia. Journal of Paleontology, 92, 313–22.Richter D. J., Fozouni P., Eisen M. B., King N. (2018) Gene family innovation, conservation and loss on the animal stem lineage. eLife
, 7, e34226. DOI: 10.7554/eLife.34226.Ros-Rocher N., Pérez-Posada A., Leger M. M., Ruiz-Trillo I. (2021) The origin of animals: an ancestral reconstruction of unicellular-to-multicellular transition. Open Biology
, 11, 200359. DOI: 10.1098/rsob.200359.Saran S. et al.
(2002) cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. Journal of Muscle Research and Cell Motility, 23, 793–802.Schaap P. (2007) Evolution of size and pattern in the social amoebas. BioEssays
, 29, 635–44.