Botting J. P., Butterfield N. J. (2005) Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa
, Walcott. Proceedings of the National Academy of Sciences of the USA, 102, 1554–9.Botting J. P., Muir L. A. (2018) Early sponge evolution: a review and phylogenetic framework. Palaeoworld,
27, 1–29.Botting J. P., Muir L. A., Xiao S., Li X., Lin J. P. (2012) Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica
sp. from the Early Cambrian of South China. Lethaia, 45, 463–75.Botting J. P., Zhang Y., Muir L. A. (2017) Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution. Scientific Reports
, 7, 5286. DOI: 10.1038/s41598-017-05604-6.Boyajian G. E., Labarbera M. (1987) Biomechanical analysis of passive flow of stromatoporoids – Morphologic, paleoecologic, and systematic implications. Lethaia
, 20, 223–9.Carrera M. G., Maletz J. (2014) Ordovician sponge spicules from the Spitsbergen, Nevada and Newfoundland: new evidence for hexactinellid and demosponge early diversification. Journal of Systematic Palaeontology,
12, 961–81.Chen J. et al
. (2004) Sponge fossil assemblage from the Early Cambrian Hetang Formation in southern Anhui. Chinese Science Bulletin, 49, 1625–8.Conway K., Barrie J., Krautter M. (2005) Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Marine Letters
, 25, 205–13.Debrenne F. et al
. (2015) Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Vol. 4–5: Hypercalcified Porifera. – Lawrence, Kansas: University Kansas Paleontological Institute.Ehrlich H. et al.
(2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry, 2, 1084–8.Ehrlich H. et al.
(2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Scientific Reports, 3, 03497. DOI: 10.1038/srep03497.Ereskovsky A. V. et al.
(2009) The homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology. BioEssays, 31, 89–97.Fairclough S. R., Dayel M. J., King N. (2010) Multicellular development in a choanoflagellate. Current Biology
, 20, R875–6.Fairclough S. R. et al
. (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biology, 14, R15. DOI: 10.1186//gb-2013-14-2-r15.Fernandes M. C. et al.
(2021) Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 20, 237–41.Finks R. M., Reid R. E. H., Rigby J. K. (2004) Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Vol. 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea
). – Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University Kansas Paleontological Institute.Gautret P., Reitner J., Marin F. (1996). Mineralization events during growth of the coralline sponges Acanthochaetetes
and Vaceletia. Bulletin de l’Institut océanographique de Monaco, no. special 14, 325–334.Gazave E. et al.
(2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia, 687, 3–10.Harvey T. H. P. (2010) Carbonaceous preservation of Cambrian hexactinellid sponge spicules. Biological Letters,
6, 834–7.Kirkpatrick R. (1908) On two new genera of Recent pharetronid sponges. Annals and Magazine of Natural History; Zoology, Botany, and Geology, Series 8,
2, 503–514.Kirkpatrick R. (1913) The Nummulosphere. An Account of the Organic Origin of So-Called Igneous Rocks and of Abyssal Red Clays. – L.: Lamley & Co.
Kozur H. W., Mostler H., Repetski J. E. (2008) A new heteractinellid sponge from the lowermost Ordovician of Nevada and a discussion of the suborder Heteractinellidae. Geo.Alp,
5, 53–67.Kruse P. D., Zhuravlev A. Yu. (2008) Middle-Late Cambrian Rankenella-Girvanella
reefs of the Mila Formation, northern Iran. Canadian Journal of Earth Sciences, 45, 619–39.