Читаем Покоренная плазма полностью

До космических полетов ученые считали, что наша планета окружена одним поясом заряженных частиц. Потом открыли второй и совсем недавно третий, отстоящий от земной поверхности на несколько десятков тысяч километров. Их существование ученые связывают с влиянием солнечного излучения и с наличием у Земли мощного магнитного поля. Именно благодаря этому магнитному полю заряженные частицы — корпускулы, — извергаемые Солнцем, отбрасываются к полюсам и рождают красочные северные сияния. Теперь ученые точно знают, что северные сияния — это свет, излучаемый плазмой.

Выше я не случайно назвал слой плазмы, окружающий Землю, «покрывалом». Плазма небезразлична к магнитным полям. Благодаря этому наша планета как бы изолирована от внешних магнитных воздействий. Кроме того, через плазменную оболочку не способно проникнуть наиболее мощное, а следовательно, и наиболее опасное для всего живого ультрафиолетовое излучение Солнца. Исчезни плазменный пояс вокруг Земли, и наша планета превратится в безжизненную пустыню.

Итак, материя Вселенной на 99 процентов — плазма. Планеты, космическая пыль, метеоры по весу занимают очень скромное место.

Но живем мы на Земле, и поэтому интересно знать, где встречается плазма в наших, земных условиях?

Плазменную «продукцию» постоянно дает сама природа.

Что такое молния, прорезывающая небо во время грозы? Плазма, возникшая в результате разряда атмосферного электричества.

Еще Ломоносов справедливо говорил, что атмосферное электричество возникает от «трения» мелких частиц, из которых состоят водяные и другие «пары». Это отдаленно похоже на электризацию янтаря, натираемого шерстью.

Ветер постоянно перемешивает воздух и тем самым разделяет электрические заряды, относит их друг от друга.

Чаще всего нижняя часть облака оказывается заряженной отрицательным электричеством. Когда в этом заряде электронов запасется очень много, то между облаком и Землей — этими природными «электродами» — возникает гигантский электрический разряд — молния.

Не оставляет сомнения и то, что и другой вид молнии — так называемая шаровая молния — тоже плазма. Люди много раз наблюдали огненные шары, иногда появляющиеся после грозы; внезапно возникший шар медленно плывет с потоком воздуха, может влететь в окно, в печную трубу и, взорвавшись, поджечь здание или убить человека. Загадка шаровой молнии до сих пор полностью не разгадана, но вполне вероятно, что это тоже плазма.

Но чаще всего мы имеем дело с плазмой, созданной самим человеком.

Пламя газовой горелки и светящиеся буквы реклам, раскаленные струи, вылетающие из сопла реактивных самолетов и космических ракет, и дуга электросварки — все это плазма. Без нее не смогут работать лампы дневного света и автомобильные двигатели, без нее не получат электроэнергию пригородные электропоезда, а фотограф не сделает снимка в сумерках. Без плазмы не обходятся ни машиностроители, ни взрывники, ни химики, ни даже врачи. Она всюду, где человек занят делом, она — верный помощник человека.

Но люди добились этого не сразу. Они много потратили сил, прежде чем покорили плазму.

Глава III

Ток через газы

Искра доктора Воля


Заглянем в далекое прошлое и посмотрим, как удалось человеку получить первую «искусственную» плазму.

…Мы в Англии конца XVII века. Об электричестве знают столько же мало, как во времена Фалеса Милетского. Правда, ученые все чаще и чаще задумываются над загадкой электрических сил, проводят опыты по электризации янтаря и других тел, но это больше напоминает забаву, чем науку.

Еще не была изобретена паровая машина и, кроме силы падающей воды и ветра, люди не знали других источников энергии. Вся деятельность человека, в том числе и научная, была под большим влиянием религии.

Итак, Англия, 1698 год. Некий доктор Воль, как и другие его коллеги-ученые, занимается физическими опытами. Пробует и он электризовать янтарь.

Однажды доктору попался большой кусок этой затвердевшей смолы. Воль решил посильнее наэлектризовать его. Долго натирал он кусок янтаря шерстью, изрядно утомился, но своего занятия не бросал. Вдруг из янтаря выскочила искра длиной не меньше двух сантиметров. «При этом раздался такой звук, точно в печке треснул уголь», — так описывал этот случай сам ученый.

Почему я говорю об этой искорке, полученной более двух с половиной веков назад таким несовершенным способом? Да потому, что это был первый искусственный разряд электричества в газе, первый кусочек плазмы, созданный человеком. Одновременно это был один из первых шагов в развитии учения об электричестве.

Так у природной искры — молнии появился «двойник» на земле — искровой электрический разряд.

Кстати замечу, что само слово «разряд» появилось много позже после опытов доктора Воля.

Почти через полстолетия после этого события житель немецкого городка Лейдена Мушенбрек построил первые кладовые для электричества — лейденские банки.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука