Читаем Покоренная плазма полностью

Но космические частицы — плохие «поставщики» зарядов, они ионизируют малое число молекул в трубке. Поэтому заметного тока заряды, рожденные ударами космических частиц, создать не могут.

Но эти заряды не бесполезны. Особенно электроны, оторванные от молекул газа.

Когда в разрядной трубке много молекул газа, эти свободные электроны не могут сильно разогнаться: они натыкаются на электронейтральные молекулы.

Представьте себе городскую площадь с большим числом снующих туда-сюда людей. Люди не прижаты друг к другу, но их много. Вы захотели перебежать площадь. Только разбежались, наткнулись на одного, потом на другого, на третьего человека. Большой скорости вам развить не удается.

Что-то похожее происходит и с электронами, созданными космическими частицами и притягивающимися к аноду. Они непрерывно сталкиваются с молекулами газа и замедляют свой бег.

Но вот пущен мотор откачивающего насоса. Меньше чем через минуту давление воздуха в трубке падает. Электронам, которые по-прежнему возникают в разрядном промежутке, становится значительно свободнее. Под влиянием электрических сил электроны теперь разгоняются до большой скорости. С молекулами газа теперь сталкиваются они реже, но зато их удары становятся «крепче».

И вот наступает момент, когда электрон, ударившись о молекулу, может сам оторвать, выбить из нее электрон. Эти два электрона — старый и новый — снова разгоняются и выбивают электроны из других встречных молекул. Возникает лавина электронов. Она напоминает снежную лавину в горах, когда брошенный с вершины ком увлекает вниз тысячи тонн снега.

В пространстве между катодом и анодом возникает много лавин электронов, движение зарядов (электронов — к аноду, положительных ионов — к катоду) принимает массовый характер. Газ из изолятора превращается в проводник тока. В трубке возникает плазма.

У плазмы есть один верный опознавательный признак, своя «визитная карточка», по которой ее легко распознать. Это — излучение световых лучей.

Почему плазма светится, я подробно расскажу дальше. Сейчас я только замечу, что это происходит в основном тоже от соударений.

Итак, плазма — это такое состояние газа, в котором изменено внутреннее строение атомов, имеется огромное количество электронов и ионов.

Одно время в науке существовало мнение, что плазма — это не особое состояние вещества, а одна из форм существования газа. Давайте для наглядности выпишем признаки газа и плазмы и сравним их.

Газ (третье состояние вещества) идеальный изолятор, света не излучает, к магнитным силам равнодушен.

Плазма (четвертое состояние вещества) хороший проводник тока, излучает свет, испытывает влияние магнитных сил.

Как видите, разница между обычным газом и плазмой велика. Если при этом учесть, что атомы плазмы имеют измененное внутреннее строение, в результате чего они превратились в положительные ионы, то право «гражданства» у плазмы как особого, четвертого состояния вещества становится бесспорным.


Всегда ли справедлив закон Ома?


То, что плазма не обычный газ, а особое состояние вещества, хорошо подтверждается изучением не только структуры плазмы, но и ее поведения.

Я уже говорил о том, что плазма, в отличие от газа, небезразлична к магнитным силам.

Газ — непроводящая среда, и в него магнитное поле проникает свободно. Плазма — проводник тока, поэтому она является преградой для магнитных силовых линий. Почему?

Электромагнитная теория гласит, что магнитное поле способно производить давление на окружающую среду. Это давление пропорционально квадрату силы поля. Предположим, что с помощью мощного электромагнита мы создали магнитное поле. Оно давит на окружающую среду с определенной силой. Если увеличить ток через катушку электромагнита таким образом, чтобы магнитных силовых линий стало в два раза больше, то это новое поле будет давить не в два, а в четыре раза сильнее. На газ магнитное давление не действует, а на плазму оно влияет. Плазма, как и металлический экран, не хочет пускать в себя магнитные силовые линии.

Благодаря этому плазму можно сжимать магнитным полем, удерживать «стеной» из магнитных силовых линий и выталкивать магнитными силами, словно поршнем.

Специфичность плазмы как особого состояния вещества может быть проиллюстрирована еще одним очень важным фактом.

Зажжем разряд в той же самой трубке и таким же способом, как это делали мы выше, когда впервые знакомились с плазмой. Тогда в схеме были включены амперметр, который фиксировал ток через трубку, и вольтметр. Последний включали параллельно разрядной трубке, чтобы знать её напряжение при протекании тока (см. рисунок на стр. 21).

Когда известна величина тока и напряжения, то считают, что известно почти все.

Действительно, в обычной электрической цепи ток и напряжение зависят друг от друга.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука