Читаем Покоренная плазма полностью

Если вы захотите узнать, что такое ионное травление и для этого заглянете в Большую советскую энциклопедию, то вас постигнет неудача — в энциклопедии вы не найдете объяснения. Причина простая: и термин «ионное травление», и прибор, который может делать этот пока непонятный вам вид травления, появились совсем недавно. Потому они и не попали еще в энциклопедию.

В продолжение ста тридцати лет люди имели дело с обычным химическим травлением. История химического травления как метода для определения структуры металлов началась с работ замечательного русского ученого-металловеда Павла Петровича Аносова. Он брал полированную пластинку металла и опускал ее в раствор соляной или серной кислоты. Кислота разъедала металл в одних местах больше, в других меньше. Гладкая поверхность превращалась в затейливый узор.

Рассматривая этот узор в микроскоп, металлург расшифровывал свойства металла или сплава, не прибегая к другим испытаниям.

Травление металлов и изучение узоров под микроскопом стало уже давно важнейшей частью металлургического производства.

Но в последние годы на пути этого хорошо освоенного метода появились трудности.

Химики, например, все чаще стали заказывать металлургам такие сплавы, которые были бы совершенно «равнодушны» к кислотам. Металлурги выполняли заказ, создавали десятки опытных сплавов. Как их испытать? Как определить, какой лучше? Подвергнуть травлению кислотой? Но ведь это кислотоупорные сплавы, на них любая кислота почти не действует.

Машиностроители потребовали себе сплавы с алюминием, а также особо прочные сплавы. Ряду отраслей производств понадобились сплавы, выдерживающие высокую температуру. Все они, несмотря на всяческие ухищрения, оказались очень неподатливыми для исследования при помощи химического травления. Простой и удобный метод оказывался здесь бесполезным.

Тогда металлурги обратились за помощью к ученым-физикам. Те обстоятельно изучили поставленную задачу и пришли к выводу, что выйти из положения можно, если прибегнуть к помощи… плазмы. Исследования возглавил профессор Московского университета имени М. В. Ломоносова Григорий Вениаминович Спивак. Под его руководством была создана первая установка для ионного травления, названная сокращенно «УИТ».

Профессор Спивак решил использовать одну особенность тлеющего разряда, которая на первых порах доставляла физикам немало неприятностей.

Вы уже знаете, что тлеющий разряд — один из наиболее замысловатых. В трубке отчетливо различаются несколько разнородных участков — светлых и темных. Потоки заряженных частиц — электронов и ионов — «преодолевают» эти участки по-разному. Так, в темном катодном пространстве, где очень велики электрические силы, они особенно сильно ощущают постороннее воздействие. Легкие электроны, движущиеся к аноду, покидают темное катодное пространство быстрей, чем тяжелые и массивные положительные ионы, движущиеся навстречу. Поэтому в этом месте разрядной трубки скапливается излишек положительных ионов, названный учеными положительным пространственным зарядом.

«Толпа» положительных зарядов вблизи катода вначале доставляла много хлопот. Обрушиваясь на катод, они с силой бомбили его поверхность. Катод не только нагревался, но и «терял в весе». От катода отлетали мельчайшие частицы, подобно тому, как летят брызги, если бросать в воду камни. «Брызги» вещества, из которого сделан катод, разлетаясь по трубке, покрывали все вокруг тонким слоем металла и, кроме того, жадно поглощали газ, которым была наполнена трубка.

Таким образом катодное распыление не только разрушало катод, но и лишало трубку газа-наполнителя без которого не может существовать разряд.

Но так же, как сумели заставить служить искру-разрушительницу, так же удалось получать пользу и от катодного распыления.

На первых порах катодное распыление применили как средство для очистки поверхностей электродов от посторонних веществ, пылинок и т. д. Разрядную трубку помещали внутрь катушки индуктивности, питаемой током высокой частоты. В трубке вспыхивал разряд, и все металлические детали попадали под обстрел тяжелых ионов. Ионы мигом снимали с металла тончайший слой и тем самым очищали его поверхность.

Если вблизи катода поместить пластинку слюды или стекла и зажечь в трубке тлеющий разряд, то очень скоро пластинка окажется покрытой тонким слоем металла, из которого сделан катод. Эту пленку отделяют и рассматривают в электронном микроскопе. Это помогает проникнуть в тайны строения веществ.

Удалось использовать и поглощение газа распыленными частицами.

Известно, что из радиоламп воздух выкачивается. Но как бы тщательно ни делали эту работу, ничтожное количество газа всегда остается в баллоне. Это сильно сказывается на работе радиолампы.

Распыляя внутри радиолампы разные вещества, жадно впитывающие в себя газ, добиваются того, что внутри баллона получается настоящее безвоздушное пространство.

Профессор Спивак и его сотрудники все это имели в виду, когда приступили к созданию первой УИТ. Много времени потратил небольшой коллектив, пока не была создана установка для ионного травления.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука