Казалось, картина достаточно убедительна: самопроизвольное излучение атомами фотонов сопровождается противоположным процессом — поглощением их. Но Эйнштейн добавил в эту картину новые мазки. Сделал это он на языке формул и строгих физических рассуждений, и сделал так, что ученые не могли с ним не согласиться.
Крупнейший физик, имя которого уже было известно всюду, занялся, на первый взгляд, простым вопросом: что произойдет, если стремительно летящий фотон наскочит не на нормальный атом, а на уже возбужденный? Ведь и такое может иногда случиться в микромире плазмы или раскаленного тела!
Эйнштейн утверждал, что в этом случае родится новый фотон. Фотон-«налетчик» заставит возбужденный атом «выстрелить» своим фотоном. Появятся, значит, два фотона, причем, они будут лететь строго в одном направлении. В этом первое отличие такого вынужденного излучения от рассмотренного выше — самопроизвольного.
Но есть и еще отличия.
Световые частицы — это не только «пули», но и порции электромагнитных волн. Такова, как вы знаете, природа света. А если свет — волны, то волны могут взаимодействовать друг с другом.
Бросьте одновременно два камня в воду. От каждою из них побегут волны. И если внимательно присмотреться к воде, то можно заметить, что в некоторых местах встретившиеся волны погасили друг друга, а в некоторых, наоборот, усилились — в этих местах размах колебаний особенно велик.
Со световыми волнами происходит примерно то же. Если атомы испускают их беспорядочно, самопроизвольно, то некоторые из этих волн гасят друг друга, некоторые — усиливают. Такой беспорядочный свет называется некогерентным. Именно с ним мы имеем дело в повседневной жизни. Свет солнца, электрической лампочки, разрядной трубки, раскаленного железа — все это в основном некогерентный свет.
Вынужденное излучение, которое «раскопал» Эйнштейн, совсем не такое, хотя внешне оно не отличается от обыкновенного света. При нем световые волны никогда не гасят друг друга, гребни и впадины их всегда совпадают.
Иными словами, это согласованное излучение атомов — когерентно.
Что добавил Альберт Эйнштейн к имевшимся в то время физическим представлениям? Казалось, совсем немного. Но это только казалось.
Теория и практика всегда идут в ногу. Они обогащают друг друга. И каким бы блестящим ни было теоретическое умозаключение, его всегда стараются проверить на практике. Так случилось и с вынужденным излучением, предсказанным Эйнштейном.
Еще в 1939 году советский ученый профессор Валентин Александрович Фабрикант поставил перед собой цель — обнаружить на опыте вынужденное излучение атомов. Сделать это было не просто, и вот почему.
Возбужденные атомы в нагретом теле излучают фотоны одни самопроизвольно, другие — под действием фотонов, вынужденно. Фотоны, возникшие в обоих случаях, немедленно поглощаются нормальными атомами, потом снова излучаются и т. д. Следовательно, у атомов вещества постоянно меняется величина энергии: у возбужденных атомов она больше, у нормальных — меньше. Физики говорят, что нормальный атом находится на первом, основном, уровне энергии, возбужденный — на более высоком. Переходы с нижнего на верхний или возвращение на основной уровень происходят скачками. При этом атом либо поглощает фотон, либо его излучает.
Атомов невозбужденных, то есть находящихся на первом уровне, в нагретом теле больше всего, поэтому они охотно поглощают все появляющиеся фотоны. При этом, как утверждал еще Эйнштейн, существует равновесие: число поглощенных фотонов равно числу излученных. Иными словами, число подъемов атомов на верхние уровни равно числу их спусков. Вынужденное излучение — это лишь один из путей спуска атомов на нижний уровень, следовательно, оно всегда будет меньше поглощения. А раз так, то и выделить вынужденное излучение невозможно.
Но профессор В. А. Фабрикант решил обойти запрет, наложенный природой. Он решил создать такую среду, в которой атомов на верхних уровнях было бы значительно больше, чем на нижних. Что это давало? В этом случае число спусков могло преобладать над числом подъемов. Атомов, стреляющих фотонами, оказывалось больше, чем атомов, поглощающих их, и это позволило бы вынужденному излучению вырваться из этой среды. Профессор прекрасно понимал, что нужна была такая среда, в которой атомы интенсивно возбуждались, то есть подбрасывались на верхний уровень и не так быстро соскальзывали вниз. Тогда ворвавшийся в среду фотон мог начать вынужденное излучение, которое, разрастаясь подобно лавине, покинуло бы среду и попало в оптические приборы.