Присужденная мне премия ставит во главу угла междисциплинарные исследования, мастером которых был сам Карл Дойч. Насколько ей соответствует моя работа? В «
Точно так же я построил и протестировал модели, описывающие влияние численности населения страны на отношение ее торговли к ВВП [Taagepera, 1976] и на размер ее городов [Taagepera, Kaskla, 2001]. Я изучал, как коммунизм взаимодействует с культурой и коррупцией. Была эта работа междисциплинарной, интердисциплинарной или же просто мультидисциплинарным «шведским столом» не связанных друг с другом исследований? Общей нитью для них было то, что я применял методы, заимствованные из физики.
Наиболее явно эта установка проявляется в моих электоральных исследованиях, например, в книге «Места и голоса» [Taagepera, Shugart, 1989]. Я написал ее вместе со студентом-магистрантом Мэттом Шугартом. После этого я продолжил свои исследования в книге «Прогноз размера партий: логика простых электоральных систем» [Taagepera, 2007]. У Мэтта появилась своя заметная книга «Президенты и ассамблеи» [Shugart, Carey, 1992]. Сейчас мы завершаем совместную книгу с гораздо более глубокими идеями. Эта наша новая книга под названием «Голоса ради мест. Логические модели избирательных систем» [Shugart, Taagepera, 2017] совершенно точно превзойдет предыдущую – «Места и голоса».
Могут ли эти книги предложить что-то тем политологам, которым неинтересны электоральные исследования? Да, могут, потому что они подают пример для подражания – изучение связей между связями.
Действительно, устанавливать связи между связями – это отличительный признак развитой науки. Неплохо иметь отдельные уравнения, связывающие индивидуальные факторы, такие как
Могут ли такие связи между связями существовать и в социальных науках? С философских позиций у нас могут возникать сомнения. Но связи между связями сейчас уже существуют в одной из частей социальных наук – в электоральных исследованиях.
Представьте простую электоральную систему, где
Сколько партий выиграют места, хотя бы одно место, в таком собрании из
N0
= (MS)1/4Например, если собрание из 200 мест избирается по десятимандатным округам, то произведение будет равно 200x10=2000. Корень четвертой степени из этого числа равен 6,7. Поэтому, скорее всего, около семи партий получат места. Исходя из этого предположения, в свою очередь, мы можем логически оценить долю мест большей партии. Из этого следует так называемое эффективное число партий [Taagepera, 2007, p. 122–164].