У нас получилась последовательность взаимосвязанных уравнений. Как говорится, кошка милая, но ловит ли мышей? Симпатичная логическая модель, но соответствует ли она реальности? Да, эта модель невероятно хорошо соответствует средним данным по миру в целом. А такое среднее, в свою очередь, является эталоном для страновых исследований. Действительно, если в стране заметно меньше партий, чем следовало ожидать, то мы должны исследовать, какие специфические страновые факторы приобрели значение помимо стандартных требований к размеру ассамблей и избирательных округов.
«Эффективное» число партий, которое я упомянул, полностью именуется эффективным числом Лааксо–Таагеперы. Мы с Маркку Лааксо разрабатывали его каждый отдельно, но затем опубликовали наши результаты совместно [Laakso, Taagepera, 1979]. Это число широко используется для характеристики числа партий, когда какие-то из них большие, а какие-то маленькие. Это число уменьшает значимость малых партий, приписывая веса долям мест, полученным партиями, пропорционально этим самым долям:
где
Это эффективное число применяется и за пределами партий. Я измерял пространство исторических империй и вычислял эффективное число политий по всему миру за более чем пять тысяч лет [Taagepera, 1997]. В результате была получена кривая или, точнее, паттерн экспоненциального уменьшения. Если продолжать этот паттерн, то как скоро можно ожидать появления единого мирового государства? Увы, придется ждать еще две тысячи лет.
Теперь рассмотрим среднюю продолжительность работы кабинета в длительной перспективе. Логические соображения, основанные на числе каналов коммуникации, подсказывают нам, что этот срок должен быть обратно пропорционален отнюдь не числу партий, а квадрату этого числа [Taagepera 2007, p. 165–175]8
, как показано на рисунке 1.Рис. 1.
Среднее соотношение длительности существования кабинетов и эффективного числа партий: предсказательная модель, линия регрессии и разброс по фактору 2 модели [Taagepera, Sikk, 2007]
Это график рассеивания по двум параметрам – длительности существования правительства и эффективному числу партий. Для удобства и наглядности обе шкалы логарифмические.
Например, если есть две партии примерно равного размера, тогда наше лучшее предположение о средней продолжительности жизни правительства будет 42/4=10,5 года. Конечно, иные факторы, помимо числа партий, влияют на продолжительность существования правительств. Рисунок 1 показывает, что под их воздействием фактическая продолжительность может быть в два раза больше, чем ожидаемая, или в два раза меньше («различаться на фактор 2»). Для двух партий это означает, что продолжительность может достигать 21 года или быть всего 5,2 года. Однако при всех вариациях эффективное число партий по-прежнему обладает мощной объясняющей силой. Оно на целых 77% объясняет общую дисперсию продолжительности жизни правительства9
.Давайте вернемся к моему главному пункту: связям между связями. В это, может быть, трудно поверить, однако знание размеров ассамблей и количества мест в избирательных округах10
позволяет довольно точно определить продолжительность жизни правительства11. Возьмем для примера Португалию12. Логическая модель умеренно переоценивает число партий и умеренно недооценивает размер большей доли мест и продолжительность жизни правительства.До этого я добрался десять лет назад в «Предсказаниях размера партий» [Taagepera, 2007]. На основании количества мест в собрании и округах можно предсказать, как