Читаем Полный справочник анализов и исследований в медицине полностью

Начало истории электрофизиологических методов исследования традиционно связывают со знаменитыми опытами итальянского врача, анатома и физиолога Луиджи Гальвани. В 1791 году Гальвани опубликовал «Трактат о силах электричества при мышечном движении», в котором впервые связывались мышечные сокращения и электрические явления. Дальнейшее развитие этих идей связано с Карло Маттеуччи, который в 1830–1840 годах показал, что в мышце всегда может быть отмечен электрический ток, который течет от ее неповрежденной поверхности к поперечному разрезу.

В середине XIX века Э. Дюбуа-Реймон показал связь между электрическим током и нервным импульсом.

Дальнейшее развитие изучения электрических свойств организма человека и животных тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

В 1888 году Юлий Бернштейн[34] предложил так называемый дифференциальный реотом для изучения токов действия в живых тканях, которым определил скрытый период, время нарастания и спада потенциала действия. После изобретения капиллярного электрометра такие исследования были повторены более точно Э. Ж. Мареем (1875) на сердце и А. Ф. Самойловым (1908) на скелетной мышце. Н. Е. Введенский (1884) применил телефон для прослушивания потенциалов действия. В 1902 году Ю. Бернштейн сформулировал основные положения мембранной теории возбуждения, развитые позднее английскими учеными П. Бойлом и Э. Конуэем (1941), А. Ходжкином, Б. Кацем и А. Хаксли (1949).

В начале XX в. для электрофизиологических исследований был использован струнный гальванометр. С его помощью В. Эйнтховен и Самойлов получили подробные характеристики электрических процессов в различных живых тканях. С этого времени фактически можно отсчитывать возраст клинической электрофизиологии, когда электрофизиологические исследования стали все шире и шире применяться в практической медицине.

Неискаженная регистрация любых форм биоэлектрических потенциалов стала возможной лишь с введением в практику электронных усилителей и осциллографов (30–40-е гг. XX в.). На сегодняшний день электрофизиологические методы исследования, пожалуй, представляют собой один из самых удобных и применимых подходов к изучению живых организмов. В настоящее время в исследовательской работе и клинической практике широко применяются основные электрофизиологические методы изучения деятельности:

• желудочно-кишечного тракта (электрогастроэнтерография);

• кожи (кожно-гальваническая реакция, находящая основное использование в полиграфе – «детекторе лжи»);

• кровообращения (реография, син. – импедансная плетизмография);

• мозга (электроэнцефалография);

• мышц (электромиография);

• сердца (электрокардиография);

• сетчатки (электроретинография).

Рассмотрим последовательно общие принципы наиболее распространенных электрофизиологических исследований и их использование в различных медицинских специальностях.

Глава 1

Основные электрофизиологические исследования

Реография

Реография (электроплетизмография, импедансная плетизмография, импедансометрия) – метод исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на графической регистрации колебаний его электрического сопротивления.

Метод основан на том, что при пропускании через участок тела переменного тока звуковой или сверхзвуковой частоты (16–300 кГц) роль проводника тока выполняют жидкие среды организма, прежде всего кровь в крупных сосудах; это дает возможность судить о состоянии кровообращения в определенной области тела или органе. С помощью реографии можно оценить кровообращение в органах, лежащих близко к поверхности тела: головного мозга (реоэнцефалография), печени (реогепатография), почек (реонефрография). Реография также позволяет определить изменения кровотока при физическом напряжении, при проведении так называемых нагрузочных проб.

Метод является высокочувствительным и эффективным для качественной оценки состояния кровоснабжения, важен для диагностики нарушений кровообращения органов или поражения всей сосудистой системы организма, используется для определения функции сердца.

Это исследование проводится с помощью специальных приборов – реографов. Реограф структурно состоит из генератора электрического тока, усилителя, детектора и насадки для графического отображения проведенных измерений. Реограммы в современной медицине регистрируют обычно с помощью реографов двух типов – биполярных и тетраполярных. Конструкция биполярных реографов предусматривает наложение на какой-либо участок тела двух электродов, между которыми пропускают переменный ток высокой частоты. Одновременно регистрируют изменение сопротивления на исследуемом участке тела.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже