Читаем Понятная физика полностью

Картинку солнечного спектра получить нетрудно. Закроем окно старой черной шторой, в которой проделаем отверстие диаметром около 1 см (старую штору не жалко). Солнечный луч впустим через отверстие и направим на боковую грань треугольной стеклянной призмы, поставленную на её основание. Параллельно другой грани призмы установим белый экран. При определенном угле падения невидимого луча света (если в комнате нет пыли) световое пятнышко на экране растянется в радужную полоску шириной 1 см и длиной около 5 см. Это и есть солнечный спектр, известный со времен Ньютона. Если призма стоит острым углом влево, то цвета в полоске располагаются слева направо в следующем порядке: красный, оранжевый, желтый и т. д., до фиолетового. Согласно теории Максвелла-Герца, каждому оттенку цвета в полоске соответствует электромагнитная волна определенной частоты (или длины волны). Такую волну называют монохроматической (одноцветной) в том смысле, что одна частота отвечает за один оттенок цвета. Считается, что Солнце излучает электромагнитные волны всех частот. Поэтому в солнечном спектре оттенки цветов непрерывно переходят один в другой.

Изменим опыт: между призмой и экраном поставим колбу с атомарным водородом. Мы увидим, что в солнечном спектре места некоторых цветов заняли вертикальные черные линии. Фраунгофер первым догадался, что это «тени» от атомов водорода и назвал их «линиями» поглощения водорода. Заметим, термин «линия поглощения» означает не геометрическую линию, а определенную частоту. Так, если отверстие в шторе уменьшить до 1 мм, радужная полоска на экране сузится в черту, а линии поглощения станут черными точками. Если в солнечном спектре в данном месте появилась черная линия, значит, фотоны с данной частотой поглощены атомами водорода (вот откуда термин «поглощение»).

Кирхгоф доказал, что водород поглощает только те линии, какие может излучать сам. Бальмер показал, что расположение линий поглощения в спектре водорода подчиняется правилу: ν = R(1/4 – 1/m2) (49.1), где ν – частота по Герцу, R – постоянная Ридберга: R=3.29*1015 с-1. Учитывая, что 4 = 22, формулу (49.1) можно переписать в виде: ν = R(1/n2 – 1/m2) (49.2). Тогда линии Бальмера (серия линий) получаются из (49.2) при n = 2. При других значениях n получаются, очевидно, другие серии линий поглощения. Действительно, когда изобрели ультрафиолетовые спектрометры, Лайман открыл в спектре водорода серию линий, отвечающих уравнению (49.2) при n = 1. Её назвали серией Лаймана.

Докажем, что линии поглощения спектра водорода соответствуют квантам излучения атома водорода. Для первой линии серии Лаймана (n=1, m=2) частота ν = R(1/12– 1/22)=3R/4. Подставляя R, получим: ν =3.29*0.75*1015=2.47*1015 -1). Энергия кванта равна hν. Подставим значения: hν = 4.136*10-15*2.47х1015 = 10.2 (эВ). Это полностью совпадает с энергией излучения при переходе электрона со второго уровня на первый: E2—E1= – 3.4 – (-13.6) = 10.2 (эВ). Для второй линии расчет даёт 12.1 эВ, что совпадает с энергией излучения водорода при переходе с 3-го уровня на 1-й: E3 – E1= – 1.5 – (-13.6) = 12.1 (эВ). Следовательно, правило Кирхгофа подтверждает теорию квантов.

Задача. Предлагаем читателю вычислить энергию поглощения для третьей линии Лаймана (n=1, m=4) и сравнить её с энергией излучения ε = E4 – E1 из данных (47.1).

§ 50. Спектр атома водорода

Для полноты картины рассмотрим спектральную серию III. Чтобы узнать, куда попадают линии этой серии, вычислим для них наибольшую частоту. Она получается из (49.2) при n = 3 и m = ∞. Тогда имеем: ν∞3 =3.29*1015/9 = 0.363х1015 (Гц). Это соответствует классической длине волны (λ = c/ν): λ∞3 = 2.99х108/0.363х1015 = 824 (нм). Известно, что видимый свет занимает диапазон примерно от 400 до 800 (нм). Следовательно, все линии серии III находятся в инфракрасной области, т. е. они невидимы. Серия № 3 носит имя Пашена. Имея инфракрасный спектрометр, можно выявить в этой области также серию Брэкета (n=4), Пфунда (n=5) и другие, представляющие скорее теоретический интерес. Таким образом, из всего спектра атома водорода человек может видеть только несколько фотонов из серии Бальмера (n = 2).

Полученные результаты будут более наглядны, если линии спектра водорода свести в таблицу. Во избежание путаницы, номера энергетических уровней (n, m) в атоме водорода взяты в круглые скобки. Значения энергии квантов поглощения, образующих серии (числа без скобок), посчитаны до серии № 6 (серия Хэмфри).


Таблица 1. Спектр поглощения атома водорода


Задача. Предлагается рассчитать по формуле (49.2) серию линий для n=8 (вдруг серию № 7 уже кто-то посчитал). Получится серия № 8, которая будет лежать в очень далекой инфракрасной области (энергия квантов будет составлять сотые доли эВ). Эту серию читатель может назвать своим именем.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии