Читаем Понятная физика полностью

Эйнштейн предложил простое уравнение для фотоэффекта: hν = A+mv2/2 (51.2), где v – скорость выбитого электрона, А – работа выхода электрона из данного вещества. Из (51.2) следует, что если энергия фотона hν больше работы выхода А, то фотон не только выбивает электрон, но и дополнительно придает ему скорость v. Если энергия hν равна или меньше А, то электрон останется внутри вещества. В металлах всегда много свободных электронов, Поэтому работа выхода для металла равна потенциальной энергии электрона проводимости внутри слитка. Измерения показывают, что эта работа равна от трёх до пяти эВ.

Фотоэффект более интересен в полупроводнике, например, в кристалле кремния, где свободных электронов немного. Здесь процесс происходит в два этапа. Сначала фотон выбивает электрон из атома кремния в узле кристаллической решетки. Если энергия фотона достаточно велика, электрон сразу вылетает из кристалла и получается внешний фотоэффект. Если нет, электрон остается внутри. Поэтому работа выхода для электрона из полупроводника состоит из двух частей: A = A1+A2 (5.3). Здесь A1 это работа, направленная на отрыв электрона от узла решетки. Поэтому ее величина должна быть больше ширины запрещенной зоны. Тогда A2 – это работа по выбиванию электрона из полупроводника. Поэтому ее величина должна быть больше потенциальной энергии электрона проводимости в кристалле. Эти величины проще определить опытным путем.

Важное практическое применение имеет внутренний фотоэффект, так как он изменяет электрические свойства полупроводника. Если подобрать полупроводник с небольшой шириной запрещенной зоны, скажем, меньше, 1.0 эВ, то такой кристалл будет чувствителен к квантам инфракрасного диапазона. При попадании на кристалл таких квантов выбитые из атомов электроны остаются внутри, резко увеличивая число электронов проводимости. При этом сопротивление кристалла резко падает, а ток в цепи вырастает. На этом принципе основана работа инфракрасных датчиков, пультов управления телевизором, ракетных головок самонаведения, а также инфракрасных очков и биноклей, которые так полезны разведчикам и другим работникам невидимого фронта.

Глава 8. Электронные оболочки

§ 52. В атоме водорода

Мы уже знаем, что в атоме водорода электрон может находиться только на определенных расстояниях от ядра. Эти расстояния определяют уровни энергии электрона внутри атома согласно уравнению (46.8). Возникает вопрос, какова форма орбит электрона? Резерфорд считал их плоскими окружностями, как у планет солнечной системы (планетарная модель атома). С этим вряд ли можно согласиться. Планета удерживается возле Солнца полем гравитации, а электрон – кулоновским полем. Эти поля разные и действуют они по-разному. Для планет не имеет значение вращение Солнца. В нашем случае вращением ядра пренебрегать нельзя. Протон заряжен, а при вращении заряженной частицы возникает циркуляция тока, которая создаёт поток поля. Это поле аналогично полю рамки Фарадея с током B = I S, где B – магнитная индукция. Очевидно, поток поля ядра должен, по правилу Лоренца, влиять на траекторию вращения электрона. Рассмотрим подробнее.

Мысленно охватим протон сферой радиуса r. На сфере обозначим экватор и нулевой меридиан. Точка их пересечения имеет нулевую долготу. Для простоты предположим, что электрон начинает вращение вокруг ядра из нулевой точки вдоль нулевого меридиана к северному полюсу сферы. Без учета силы Лоренца электрон должен прокатиться по меридиану и вернуться в нулевую точку. Но поток поля ядра влияет на движение электрона. Структура потока, как уже говорилось, приблизительно совпадает с полем витка с током, осью которого является ось вращения протона. Из магнитной теории следует, что магнитная индукция поля протона приблизительно описывается уравнением B = 2Pm/r3 (52.1), где Pm – магнитный момент ядра: Pm = eћ/2mp (52.2), где mp – масса протона. Решение уравнения (52.1) является непростой задачей. К счастью, нам это не требуется. Считается, что магнитное поле действует перпендикулярно скорости электрона (сила Лоренца). Вовторых, сила Лоренца невелика, так как масса протона почти в 2000 раз больше массы электрона, а это значит, что индукция поля ядра мала. Так как сила Лоренца не влияет на величину скорости электрона, радиус r не изменится, хотя орбита электрона уже не будет простой окружностью.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии