Читаем Популярная аэрономия полностью

Есть такое понятие - "колебательная температура", или "температура колебательного возбуждения". Дело в том, что практически при любой температуре газа часть молекул этого газа будет находиться в состоянии колебательного возбуждения. С ростом температуры количество колебательно возбужденных молекул быстро растет. Однако возможна ситуация, когда температура газа не меняется, а количество (процент) колебательно возбужденных частиц растет (скажем, за счет фотохимических процессов). В этом случае рост числа возбужденных частиц можно приписать росту некоторой эффективной температуры - температуры колебательного возбуждения Тк. В самом простом случае Тк просто равна обычной (кинетической) температуре газа Тн. В остальных случаях (при наличии дополнительных источников возбуждения) Тк больше, чем Т н.

Группой американских исследователей под руководством Фергюсона, заложивших основы наших сегодняшних представлений о величинах , в 1969 году был получен неожиданный результат.

Колебательная температура

Оказалось, что константа самой важной ионосферной ионно-молекулярной реакции (16) зависит от колебательной температуры участвующих в ней молекул азота. Причем не просто зависит, а очень сильно зависит. При изменении Тк от 300 до 1000 К константа 16 возрастала в 100 (!) раз.

Этот факт получил огромный резонанс среди специалистов по аэрономии. Возник вопрос о пересмотре чуть ли не всей схемы ионизационно-рекомбинационных преобразований в ионосфере. Однако до этого дело пока не дошло. При внимательном подходе выяснилось, что такой драматический эффект получается, когда сам газ остается холодным, при комнатной температуре. А при температуре, скажем, 1000 К увеличение колебательной температуры уже не ведет к росту 16 более чем в 2 раза. А поскольку нас в ионосфере интересуют как раз температуры Тн в 1000 К и выше, эффект колебательного возбуждения не должен как будто играть такой страшной роли, как показалось сначала.

Однако проблема не снята с повестки дня. Дело в том, что для объяснения ряда эффектов в области F2 ионосферы требуется предполагать зависимость константы реакции (16) от условий. Но от каких? Все от той же колебательной температуры азота? Или, может быть, как предложили недавно, от электронной температуры, которая сильно меняется на высотах максимума F2? Ответ еще предстоит найти.

Что во что переходит или окончательная схема процессов


Мы рассмотрели все этапы той карусели заряженных частиц, которая непрерывно идет в верхней атмосфере и называется ионизационно-рекомбинационным циклом процессов. Соединим теперь отдельные части и посмотрим на картину преобразования ионов и электронов в целом. Помним только, что речь идет о дневной ионосфере на высотах 100 - 200 км, где нет ни отрицательных ионов, ни ионов-связок, которые так усложняют жизнь в области D, и где можно не беспокоиться о динамических процессах. Итак, в результате фотоионизации образуются положительные ионы и электроны. Электроны, как говорится, все на одно лицо - их различить невозможно. А вот ионы образуются разные. В различных количествах. И их дальнейшая судьба складывается по-разному.

Атмосфера на высотах 100 - 200 км, как мы знаем, состоит из молекул и атомов азота и кислорода. Значит, именно ионы N2+, О2+, О+ и N+ образуются в результате фотоионизации. О+ и N+ - ионы атомные. Для них нет быстрой реакции рекомбинации с электроном. Значит, их судьба ясна - они рано или поздно гибнут в ионно-молекулярных реакциях, образуя другие ионы. Какие именно? И это ясно - ионы с меньшим потенциалом ионизации, т. е. О2+ и NO+. А вот у образующихся молекулярных ионов N2+ и О2+ судьба сложнее. Два типа процессов борются за их уничтожение: диссоциативная рекомбинация и ионно-молекулярные реакции. Исход этой борьбы различен для O2+ и N2+. Ионы молекулярного кислорода гибнут в основном в реакциях рекомбинации с электронами, и только на высотах, где много молекул окиси азота (область Е и несколько выше), на судьбу этих ионов начинает влиять реакция О2+ с NO. А вот на концентрацию ионов N2+ диссоциативная рекомбинация совсем не влияет. Слишком велика активность этих ионов в ионно-молекулярных реакциях - эти реакции целиком и определяют гибель N2+. Если выразить все в терминах "времени жизни", то это будет выглядеть так: время жизни N+ относительно ионно-молекулярных реакций много меньше, чем время жизни N2+ относительно диссоциативной рекомбинации.

Диссоциативной рекомбинации

Перейти на страницу:

Похожие книги

1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное
Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное