Мы возвращаемся к основному вопросу этой главы: какова судьба ионов после их образования в результате фотоионизации? Раз динамическими процессами на выбранных нами высотах можно пренебречь, следует рассмотреть фотохимические реакции. Двумя главными типами химических процессов на высотах 100 - 200 км являются (кроме фотоионизации) диссоциативная рекомбинация и ионно-молекулярные реакции. О них-то мы и поговорим, прежде чем перейти к общей картине ионных преобразований.
В книге "Химия, ионосфера и космос" подробно рассказано об истории становления взглядов на диссоциативную рекомбинацию молекулярных ионов как быстрый процесс, играющий важную роль в ионосфере Земли и планет. Понадобилось около 20 лет, чтобы от первых предположений английского ученого Бейтса о существовании и роли диссоциативной рекомбинации прийти к современным представлениям об этом процессе.
Итак, диссоциативная рекомбинация молекулярных ионов. Она записывается в виде
При соединении молекулярного иона XY+ с электроном, как и при всякой рекомбинации, выделяется энергия, которая ранее была затрачена на ионизацию. От того, какие есть пути уноса этой энергии, будет зависеть эффективность (константа скорости) данного типа рекомбинационных процессов. В реакциях (6) и (7) энергия уносится либо излучением (отсюда и название "радиативная рекомбинация", (6)), либо третьей частицей М (реакция тройных соударений (7)). Это малоэффективные пути уноса энергии, поэтому и эффективность процессов (6) и (7) мала.
В процессе диссоциативной рекомбинации (10) энергия рекомбинации тоже сначала идет на возбуждение. Но образующаяся молекула нестабильна: она не может удержать полученный запас энергии и распадается на составляющие ее атомы, один из которых в свою очередь может быть возбужден.
Такой путь освобождения энергии, выделяющейся при рекомбинации, более всего удобен природе - константа скорости диссоциативной рекомбинации весьма высока. Если для процесса радиативной рекомбинации (6), как мы видели, константа скорости равна 10-12 см3xс-1, то для процессов диссоциативной рекомбинации основных ионосферных ионов она составляет 10-6-10-7 см3xс-1. Разница в миллион раз и определяет ту важную роль, которую процесс диссоциативной рекомбинации играет в ионосфере как главный рекомбинационный процесс выше 100 км.
Что же мы знаем и чего не знаем сейчас о конкретных процессах диссоциативной рекомбинации?
В ионосфере нас интересует главным образом диссоциативная рекомбинация трех основных молекулярных ионов NO+, О2+ и N2+:
О рекомбинации сложных ионов-связок, наблюдаемых в области D, мы поговорим в одной из следующих глав. Для ионов N2+, О2+ и NO+ было проведено много лабораторных измерений. Трудности таких измерений и забавные случаи, которые при этом возникали, описаны в книге "Химия, атмосфера и космос". К настоящему времени эти трудности преодолены - мы имеем надежные значения констант диссоциативной рекомбинации для наших ионов (обозначим их соответственно N0+, О2+ и N2+) при комнатной температуре (около 300 К):
Однако температура 300 К не характерна для верхней атмосферы. Для интересующих нас высот более характерны температуры 1000 К и выше. Значит, нужно еще знать, как меняются величины * с температурой. Но тогда возникает следующий вопрос: с какой именно температурой? Ведь в реакции участвуют ион и электрон, а температура ионов и электронов в ионосфере может быть различной. А может, вообще, величины * зависят от температуры основной массы частиц среды, т. е. от температуры нейтралов?
Полностью этот вопрос не решен и по сей день. При лабораторных измерениях, которые, собственно, и питают нас сведениями о скоростях диссоциативной рекомбинации для различных ионов, получают несколько разную картину изменения * в зависимости от того, меняют ли в эксперименте только электронную температуру Те при неизменных ионной температуре Ти и температуре нейтралов Тн или увеличивают Те и Ти одновременно. Принято все же считать (и это является основой всех аэрономических расчетов), что в первую очередь величины * зависят от температуры электронов. Для ионов NO+ и О2+ принимается обратно пропорциональная зависимость * от Те, а для N2+ зависимость оказалась настолько слабой, что ею часто пренебрегают. Таким образом, в основной части ионосферы мы имеем три процесса диссоциативной рекомбинации (11) - (13) с константами скорости:
Казалось бы, выражения (15) дают нам исчерпывающий ответ на все вопросы, связанные с диссоциативной рекомбинацией молекулярных ионов в ионосфере. На любой высоте, в любых условиях, зная электронную температуру, можно вычислить * для любого из ионов. И действительно, знание величин * в виде (15) считалось бы вполне достаточным 10 лет назад. Но, увы, не сегодня - ведь аэрономия не стоит на месте.