В последовавшее за 1969 годом пятилетие развернулась горячая дискуссия о том, какова же все-таки величина I и как она меняется с циклом солнечной активности. Вопрос еще не решен до конца, но сейчас (конец 1976 года) есть основания считать, что ионосферные оценки были верны, а экспериментальные данные 1969 года ошибочны, их необходимо подправить. Недавние измерения Хинтереггера вновь приводят к величинам около 2,5-3 эрг/(см2xс) для минимума солнечной активности. Сколько же эргов будет тогда в период максимума? Ионосферные оценки и теория предсказывают 6-8. Ну а с экспериментом необходимо подождать до года... высокой активности.
Для того чтобы изучать поведение заряженных частиц в ионосфере, необходимо прежде всего знать величину q на разных высотах. Типичное распределение q с высотой показано на рисунке. Формула (5) позволяет понять, почему высотный профиль скорости ионизации выглядит так, а не иначе.
Величина i. от высоты не зависит, а потому на профиль q не влияет. Давайте двигаться вдоль этого профиля сверху вниз, скажем, с высоты 300 км. На этих высотах поглощение излучения еще несущественно, поэтому величину I можно считать постоянной. Значит, меняется только концентрация нейтральных частиц. Чем больше [М], тем больше q,- это следует из (5). А поскольку [М] растет с уменьшением высоты, должна увеличиваться и скорость ионизации q. Именно это мы и видим на рисунке.
Но где-то ниже 200 км атмосфера становится уже настолько плотной, что начинается поглощение ионизующего излучения. Чем ниже мы опускаемся, тем меньше оказывается количество ионизующих квантов, достигшее данного уровня. Величина I начинает быстро уменьшаться при нашем движении вниз. Теперь уже два множителя изменяются в формуле (5) с уменьшением высоты- [М] и I. Начиная с некоторого уровня в атмосфере уменьшение I становится сильнее, чем увеличение [М]. На этом уровне образуется максимум скорости ионизации, что и видно на рисунке. Конечно, кривая на рисунке - лишь пример, показывающий, чем определяется высотный профиль скорости ионизации. На практике рассчитывают целый набор профилей q для различных условий - для максимума и минимума солнечной активности и для различных моментов дня.
Последнее очень важно, поскольку высота Солнца над горизонтом (или, как чаще говорят, зенитный угол Солнца Z,т. е. расстояние Солнца в угловой мере от точки зенита) изменяется в течение дня. В полдень высота Солнца максимальна, а зенитный угол минимален. А во время восхода и захода (Солнце на горизонте) высота равна нулю, a Z равен 90°. Поглощение ионизующего излучения очень сильно зависит от Z. Когда солнечные лучи падают на атмосферу прямо (Солнце в зените, Z=0)X ОНИ проникают в атмосферу глубже всего. При наклонном падении лучей они проходят большую толщу атмосферы, поглощение возрастает и на данный уровень в атмосфере попадает меньше излучения, чем при вертикальном падении. Таким образом, чем больше зенитный угол Солнца (чем ближе оно к горизонту), тем скорость ионизации солнечным излучением на данной высоте меньше.
Вернемся на время к реакции фотоионизации (3). Мы знаем, что энергия кванта ионизующего излучения hv тратится на отрыв электрона от нейтральной частицы X. Знаем мы и что энергия, которую надо затратить на отрыв электрона (потенциал ионизации), составляет 10-15 эВ. Спрашивается, куда девается избыток энергии жестких квантов, т. е. квантов, которые несут десятки и сотни электронвольт? Например, энергия кванта с длиной волны 300 A составляет около 40 эВ, а с длиной волны 100 A - более 100 эВ. Скажем, 15 эВ уйдет на сам процесс ионизации, а остальные?
Часть энергии может быть потрачена на возбуждение образовавшегося иона. Это самое большое несколько электронвольт. Часть может перейти в кинетическую энергию иона, т. е. пойти на разогрев атмосферного газа. Это обычно доли электронвольта. И все еще остается вопрос: а остальное? Куда девается остальная энергия ионизующего кванта?
Избыток энергии, как выяснилось, уносит образующийся электрон. Он называется фотоэлектроном, так как рождается в процессе фотоионизации, и может иметь энергию (в зависимости от того, насколько жестким был ионизующий квант) от долей электрон-вольта до сотен электронвольт.