Читаем Популярная аэрономия полностью

Таким образом, в верхней атмосфере существует новый агент, о существовании которого вначале и не подозревали,- "горячие" (т. е. энергичные, с энергией, превосходящей тепловую энергию окружающих частиц) электроны. Этот агент может активно участвовать во многих важных процессах в верхней атмосфере. Скажем, в разогреве атмосферного газа - ведь, сталкиваясь с нейтральными атомами и молекулами, горячие электроны будут передавать им часть своей энергии. Или в образовании возбужденных нейтральных частиц - ведь большая часть переданной при столкновении энергии может идти именно на возбуждение. И наконец, в ионизации. Да, да, как это ни странно, именно в ионизации. В том самом процессе, где фотоэлектроны родились. Ведь они, как мы только что говорили, могут иметь энергию до сотен электронвольт. И значит, вполне способны оторвать новый электрон от подвернувшейся нейтральной частицы.

Получается, что при вычислении скорости ионизации в атмосфере необходимо учитывать кроме первичного акта ионизации еще и вклад вторичных процессов - ионизации фотоэлектронами. Это существенно усложняет расчеты профилей q.

Является ли коротковолновое излучение Солнца единственным источником ионизации в ионосфере? Нет, не является. Но оно - главный источник. В определенных условиях, например в самой нижней части ионосферы (h<90 км), в ночное время или в случае особых явлений в полярных широтах, ионизацию создают другие источники ионизации (прежде всего потоки корпускул), о которых мы расскажем в соответствующих разделах книги.

Мы знаем теперь ответ на вопрос, поставленный в названии этой главы. За образование ионосферы свыше 100 км в дневных условиях отвечает коротковолновое излучение Солнца. Представляем мы себе и трудности, с которыми связан расчет скоростей ионизации этим излучением в верхней атмосфере. Мы имеем высотный профиль q, т. е. знаем, сколько электронов (и ионов) образуется на каждой высоте в одном кубическом сантиметре в секунду. Значит ли это, что мы знаем тем самым и профиль распределения концентрации электронов в ионосфере? Увы, нет. Ведь равновесные концентрации заряженных частиц - результат действия всего ионизационно-рекомбинационного цикла, в котором ионизация является лишь первым шагом. Мы увидели, как рождаются заряженные частицы. Посмотрим теперь, как складывается их дальнейшая судьба.


4. Равновесные концентрации ионов


Итак, нас интересует дальнейшая судьба ионов, родившихся в акте фотоионизации. Что происходит с ними потом?

Прежде всего, динамические процессы могут в принципе унести их на большое расстояние от места рождения, в область атмосферы с другими условиями. Однако о такой ситуации, действительно наблюдаемой в области F2 и выше, мы поговорим чуть позже. А сейчас рассмотрим, как и договорились, область высот 100 - 200 км. Принято считать, что на этих высотах динамика не влияет заметно на заряженные частицы, во всяком случае днем.

Давайте посмотрим, почему.

Что такое "время жизни"


В фотохимии используют известное физическое понятие "время жизни данной частицы" (иона, электрона, нейтрального атома и т.д.).

Время жизни частицы

Оно обозначается обычно и представляет собой время, которое частица (назовем ее X) успевает просуществовать между своим рождением в одном процессе и гибелью в другом. Если под "другим" понимается любая реакция, в которой участвует наша частица X, то и т будет просто фотохимическое время жизни, или время жизни относительно фотохимических процессов. Если же под "другим" понимать какую-то конкретную реакцию, то мы получим время жизни относительно этой реакции. Когда имеется несколько реакций, в которых может участвовать данная частица, сравнение соответствующих времен жизни дает нам представление о том, какая из реакций доминирует. Та из них, время жизни относительно которой меньше, будет являться основным процессом гибели частиц X.

Поскольку мы не раз будем оперировать понятием "время жизни"' и сравнивать величину для разных процессов, уместно, видимо, пояснить все сказанное примером. Пусть нас интересует, во-первых, время жизни электронов днем на высоте 160 км и, во-вторых, какой из трех процессов рекомбинации -

Радиативная рекомбинация атомных ионов. Формула 6

рекомбинация атомных ионов при тройных соударениях. Формула 7

Диссоциативная рекомбинация молекулярных ионов. Формула 8

- определяет гибель электронов на данной высоте.

Первый процесс - радиативная рекомбинация атомных ионов, второй - рекомбинация атомных ионов при тройных соударениях" (М - любая третья частица), а третий - диссоциативная рекомбинация молекулярных ионов. Пусть нам известны константы всех трех процессов и концентрации частиц:

Константы всех трех процессов и концентрации частиц

Вероятность участия -частицы (в нашем случае - электрона) в данной реакции равна произведению константы скорости и концентрации других участвующих частиц. Для реакций (6) - (8) это будет выглядеть следующим образом:

Формула 9

Ну а время жизни обратно пропорционально вероятности участия:

Время жизни частиц

Перейти на страницу:

Похожие книги

1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное
Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное