Читаем Популярная аэрономия полностью

Лабораторные калибровки дали величины I14/I28 порядка 1 - 3%. Несколько паразитных частиц с М=14 на 100 молекул азота. А на полетных спектрах это отношение, как правило, оказывалось несколько выше (в среднем от 3 до 5 - 6%). Казалось бы, отнести разницу за счет атмосферных

атомов азота - и вот вам готовое отношение [N]/[N2] в атмосфере.

Однако у многих исследователей появились сомнения. Во-первых, несколько процентов от концентрации N2 - это довольно много для атомного азота, особенно в нижней части измерений, в области Е. Скажем, на высоте 130 км 1% от концентрации N2 составляет 1010 см-3. Это много больше, чем дают даже грубые теоретические модели распределения [N]. Во-вторых, отношение I14\I28 обнаружило сильные вариации от эксперимента к эксперименту, то поднимаясь до высоких значений, превосходящих 10%, то опускаясь до лабораторных величин. Как-либо разумно объяснить эти вариации, связать их с изменением состояния атмосферы, не удавалось.

И вот мнения специалистов по масс-спектрометрии разделились. Большинство предпочло воздержаться от анализа данных по I14\I28 и определения по ним количества атмосферного атомного азота.

Однако некоторые исследователи склонны приписывать полученную разницу между лабораторными и наблюдаемыми значениями I14\I28 целиком вкладу атмосферного атомного азота. Естественно, в этом случае получаются высокие [N]/[N2], порядка нескольких процентов, или, что то же (поскольку мы здесь можем считать концентрации N2 известными с хорошей точностью), высокие концентрации атомов азота, на 2, а то и на 3 порядка большие, чем дает современная фотохимическая теория. Можно ли подправить теорию, чтобы получить более близкие к эксперименту значения? Оказывается, нет. Существует принципиальная трудность, связанная реакцией (42). В этой реакции происходит одновременная гибель атомов N и молекул N0. Константа скорости реакции известна из лабораторных измерений и равна 2x10-11 см3xс-1. Помножив концентрацию N на концентрацию NO и на эту величину, мы, естественно, получим скорость гибели N и NО. В условиях равновесия эта скорость должна компенсироваться скоростями образования соответственно атомов N и молекул NО.

Взяв концентрации окиси азота, описанные выше, и концентрации N, измеренные в масс-спектрометрических экспериментах, мы получим очень высокие скорости гибели N и NO. Так, на высотах 150 - 160 км величина [N][NO]2 будет составлять 104 - 105 см-3xс-1. Это очень много. Никакие известные механизмы (включая и реакцию с возбужденным азотом N (2D)) не способны обеспечить столь высокую скорость образования окиси азота на этой высоте. Аналогичная картина наблюдается и на других высотах, где значения [N] высоки. Чтобы показать, что полученные высокие значения [N][NO]2 невозможно принять с точки зрения скорости образования N, нам необходимо подробнее рассмотреть вопрос, откуда берется атомный азот.

Действительно, мы рассматривали присутствие в верхней атмосфере атомов азота как нечто заданное свыше, как нечто само собой разумеющееся. Теперь настало время подумать о том, как, в результате каких процессов, появляются в атмосфере атомы N.

Мы знаем, что в атмосфере начиная с некоторых высот активно идет диссоциация молекулярного кислорода. В результате этого процесса, вызываемого солнечным ультрафиолетовым излучением, молекулы O2 распадаются на два составляющих их атома О. Процесс этот идет настолько эффективно, что уже на высотах 130- 140 км концентрации О и O2 сравниваются, а выше кислород в атмосфере присутствует в основном в виде атомов.

Так может, подобное же происходит и с азотом? Может, зарегистрированные масс-спектрометрами относительно высокие концентрации N есть лишь отражение эффективно идущей диссоциации N2?

Диссоциация N2

Оказывается, нет. Молекулу N2 мы не раз называли "ленивой" за ее нежелание вступать в различного рода реакции. Не изменила она себе и в этом случае. Молекулярный азот активно не хочет подвергаться диссоциации солнечным излучением. В этом отношении он полностью игнорирует пример своего коллеги молекулярного кислорода. Если для O2 коэффициент диссоциации составляет около 10-5 с-1 (вероятность диссоциации под действием солнечного излучения в расчете на одну молекулу), то для N2 эта величина равна всего лишь 10-12 с-1. Разница, как видите, весьма внушительная - в миллион раз.

Простой расчет показывает, что если бы в атмосфере действовала только диссоциация N2 солнечным излучением (так называемая фотодиссоциация), то концентрации атомов азота в верхней атмосфере были бы ничтожно, неизмеримо малы.

На самом деле на помощь фотодиссоциации приходит диссоциация N2 в результате цикла ионных реакций. Действительно, посмотрите на эти реакции, о которых мы говорили в главе 4:

Формула 47

Перейти на страницу:

Похожие книги

1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное
Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное