Но из физики нам известно, что атомы и молекулы могут обладать кроме кинетической энергии и внутренней энергией, которую они запасают, возбуждаясь на разные уровни в результате различных процессов. Уже на заре исследований верхней атмосферы стало ясно, что возбужденные частицы существуют и в атмосферном газе. Доказательством этого задолго до первых ракетных и спутниковых экспериментов послужило наблюдение собственного свечения атмосферы в различных условиях: ночью, в сумерках, во время полярных сияний. Дело в том, что запасенную внутреннюю энергию возбужденный атом или молекула могут расходовать по-разному. Эта энергия в результате столкновений может быть потрачена на разогрев окружающего газа, образование другой возбужденной частицы в результате химической реакции или перейти в излучение. В последнем случае наш атом (или молекула) излучит квант света. При этом частицы данного сорта в данном состоянии возбуждения могут испустить только квант излучения определенной длины волны. Скажем, атом кислорода в возбужденном состоянии 1S всегда будет давать излучение только с длиной волны 5577 A (это и есть известная зеленая линия атомного кислорода в свечении ночного неба и полярных сияний), а молекула кислорода в состоянии 1g- только излучение в инфракрасной области с длиной волны около 1,27 мк.
Таким образом, линии и полосы излучения являются своего рода "паспортами" различных возбужденных частиц. Именно по этим "паспортам", наблюдая с Земли свечение верхней атмосферы, установили, что в ней существуют возбужденные атомы кислорода в состояниях 1S и 1D, возбужденные молекулы О2 в различных состояниях, наиболее важным из которых, как мы увидим дальше, является состояние 1g, возбужденные атомы натрия и возбужденные молекулы гидраксила ОН. У всех этих частиц оказались наиболее ясные "паспорта", поэтому их и отождествили в первую очередь.
В дальнейшем, с развитием наблюдательных средств и лабораторных исследований строения атомов и молекул, список возбужденных частиц, обитающих на различных уровнях в верхней атмосфере, расширялся и пополнялся. Однако в течение многих лет изучение атмосферных эмиссий шло само по себе, в отрыве от изучения основных проблем строения и физикохимии верхней атмосферы. И только относительно недавно стали понимать тесную связь возбужденных частиц с самыми насущными вопросами аэрономии и соответственно стали уделять изучению этих частиц очень большое внимание. Посмотрим, почему.
К сожалению, подробное описание всех или хотя бы значительного числа возбужденных атомов и молекул, изучаемых сейчас в верхней атмосфере, потребовало бы введения слишком большого числа новых (подчас довольно сложных) терминов и понятий, которые не встречались на страницах этой книги и которые значительно усложнили бы ее чтение. По этой причине мы постараемся здесь рассмотреть общие особенности поведения и роли возбужденных частиц в верхней атмосфере и проиллюстрировать возможности, которые открываются при их введении в аэрономию, на нескольких конкретных примерах.
Чем же замечательны возбужденные частицы, чем они отличаются от своих собратьев - атомов и молекул в основном (невозбужденном) состоянии?
Прежде всего своей активностью. Как правило, возбужденные специи более активны, чем невозбужденные, они охотнее вступают в различные химические реакции. Мы уже говорили в этой главе о проблеме окиси азота. Основным путем образования N0 испокон веков считалась реакция атомного азота с молекулами О2
Это уже знакомая нам реакция (41). Однако эффективность (константа скорости) этой реакции для обычных N и O2 очень мала - около 10-16 см3xс-1 при атмосферных температурах. Такая эффективность совершенно недостаточна, чтобы объяснить существующие в атмосфере концентрации окиси азота. Гораздо эффективнее идет эта реакция, если молекула кислорода возбуждена в состояние 1g (см. реакцию (43)). В этом случае константа скорости составляет 3x10-15 см3xс-1. Однако и это, как мы видели в первом параграфе этой главы, не решает проблемы N0. А если в возбужденном состоянии 2D находится атом азота, то константа скорости реакции оказывается еще выше - около 10-11 см3xс-1. Теперь уже эффективность процесса достаточно велика и реакция между N(2D) и О2 (см. реакцию (44)) решает проблему источника окиси азота.
Пример с окисью азота является прекрасной иллюстрацией того, как сильно влияет на эффективность реакции участие в ней возбужденных частиц (константа скорости возросла примерно на 5 порядков величины!) и как с помощью таких частиц решается одна из крупных проблем аэрономии.
Значит, химическая активность - первая важная особенность возбужденных атомов и молекул. Ну а вторая?