Читаем Популярная аэрономия полностью

Ионосферу можно образно представить себе резервуаром заряженных частиц. В дневных условиях в резервуар непрерывно втекают частицы через кран "фотоионизация". Но резервуар не переполняется, поскольку непрерывно действует канал "рекомбинация", по которому частицы из резервуара вытекают. В равновесных дневных условиях количество частиц в резервуаре (т. е. концентрация ионов и электронов в ионосфере) определяется, таким образом, скоростью двух процессов: натекания частиц (фотоионизация) и вытекания (рекомбинация).

Ионосфера

Ночью же, очевидно, равновесие нарушится. Натекание прекращается, а вытекание остается. Следовательно, количество частиц в резервуаре будет непрерывно уменьшаться. Как быстро будет происходить это уменьшение? Это зависит только от эффективности вытекания, скажем, от диаметра отверстия, через которое вытекание происходит (т. е. от скорости рекомбинации, определяемой величиной α').

Хотя темп уменьшения [е] со временем замедляется (вспомните обычную ванну - скорость вытекания воды из нее сильно зависит от того, наполнена она доверху или на одну четверть), как мы видели, при современных значениях α' ионосфера практически должна к утру исчезнуть. Отверстие для вытекания столь велико, что удержать воду в резервуаре всю ночь невозможно. А она держится! В чем же дело?

Единственный выход - предположить, что ночью образование заряженных частиц в результате процессов ионизации не прекращается полностью. Но кран "фотоионизация" ночью закрыт, так как Солнце ушло за горизонт. Откуда же пополняется резервуар заряженными частицами? Вывод прост: значит, кроме коротковолнового солнечного излучения, существует дополнительный источник ионизации, который не выключается и ночью. Иначе говоря, есть еще один кран (на рисунке он показан пунктиром), через который непрерывно поступают ионы и электроны. Днем слабая струйка из этого крана незаметна на фоне мощного потока заряженных частиц, образуемых солнечным излучением. Но вот ночью...

Ночью ситуация меняется. Солнце зашло, начинается утекание частиц из резервуара по каналу "рекомбинация". Количество вещества в резервуаре уменьшается, уменьшается и вдруг... стоп. Уменьшение прекратилось, скорость истечения (напомним, что она прямо зависит от количества ионов и электронов) стала сравнима со скоростью натекания из дополнительного крана. Вновь наступило состояние равновесия и вновь выполняются равновесные условия, но уже с ночными значениями [e] и с величиной скорости ионизации g, обусловленной дополнительным источником ионизации.

Итак, все рассуждения неизбежно приводят нас к заключению: ночью в рассматриваемой области высот действует дополнительный источник ионизации (g≠O). Это и обеспечивает сохранение электронной концентрации, несмотря на высокую скорость рекомбинации. Теперь вся проблема лишь в том, что это за источник. Какова его природа?

Еще в 1960 году советские ученые Г. С. Иванов-Холодный и Л. А. Антонова выдвинули гипотезу корпускулярной ионизации ночной ионосферы. Они предположили, что ночью ионосфера существует за счет потоков корпускул, а точнее, за счет мягких электронов с энергиями от одного до нескольких десятков килоэлектронвольт.

Слой Е

Первоначально казалось, что такие потоки нужны для всей ионосферы, однако потом стало ясно, что область F поддерживается за счет динамических процессов (мы еще вернемся к этому), в области D действуют более жесткие корпускулы, а вот на высотах 100 - 170 км... Здесь, как мы видим, источник ионизации ночью просто необходим. Так почему бы корпускулярным потокам не быть этим источником?

У корпускулярной гипотезы много привлекательных сторон. Достаточно иметь общий поток мягких электронов ночью около одной сотой эрга (0,01 эрг/(см2×с)), чтобы решилась наша проблема втекания - вытекания и соответствующие равновесные концентрации электронов оказались бы близки к наблюдаемым. Кроме того, с помощью потоков корпускул можно логично объяснить две важные особенности поведения электронной концентрации в области Е: изменчивость [е] во времени и изрезанность профиля [е] с высотой. Первый факт объясним переменчивым характером появления мягких электронов, второй - изменчивостью спектра потока, т. е. соотношения между числом частиц различных энергий. Однако корпускулярная гипотеза встретила и ряд трудностей. И главная из них заключается в том, что неясно, существуют ли реально необходимые потоки мягких электронов на средних широтах? Мы привыкли связывать различные эффекты в высокоширотной ионосфере (полярные сияния, авроральное поглощение, явления поглощения в полярной шапке и т. д.) с вторжением корпускул различных энергий, но вот в средних широтах...

Казалось бы, всю проблему может решить эксперимент. Но измерять "кэвные" электроны очень и очень трудно. И хотя было, проведено несколько успешных регистраций таких потоков (в том числе Г. С. Ивановым-Холодным и его сотрудниками), нет недостатка и в отрицательных результатах, когда этих потоков не обнаруживали вовсе или они были ничтожно малы для наших целей.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука