Но мы уже знаем, какие положительные ионы реально существуют в ионосфере выше 100 км. Обсуждали мы и различные процессы рекомбинации. А коли так, легко понять, что в последнем выражении должны учитываться лишь молекулярные ионы (ведь у атомных очень низкий коэффициент рекомбинации!), да и то не все. Как видно на схеме преобразования положительных ионов (стр. 59), в рекомбинации с электронами принимают реальное участие лишь два основных молекулярных иона N0+ и O2+. Значит, и практическая расшифровка нашей формулы для α' выглядит так:
Вот мы и привели наш важный параметр к очень простым величинам: относительным концентрациям двух молекулярных ионов и константам диссоциативной рекомбинации для этих ионов. И те и другие нам достаточно хорошо известны. Отталкиваясь от них, и поговорим подробнее о поведении α' в ионосфере.
Начнем с абсолютных величин. В области Е, как мы знаем, NО+ и О2+ являются основными ионами. Днем их примерно поровну. Значит, дневная величина α' должна лежать примерно посередине между α*NO+ и α*O2+.Это около (3÷4) 10-7 см3×с-1. Двигаясь вверх, мы будем иметь все меньшую долю молекулярных ионов за счет появления все большего количества атомных. На высотах, скажем, области F1 суммарная доля ионов N0+ и О2+ не превосходит днем 25-30%. К тому же с ростом высоты растет электронная температура Те. А константы α*NO+ и α*O2+ обратно пропорциональны Те. Оба указанных фактора приводят к достаточно быстрому уменьшению α' с ростом высоты. В области F1 α' будет уже равен (3÷5) 10-8 см3×с-1.
При переходе от дня к ночи также два фактора влияют на изменение α'. С одной стороны, растет доля ионов NO+, с другой - падает электронная температура. В результате на высотах 100-200 км ночью эффективный коэффицкент рекомбинации в 2 - 3 раза выше, чем днем.
Хотя в этой главе мы специально ограничиваемся высотами 100 - 200 км, в данном случае, говоря об эффективном коэффициенте рекомбинации, нам придется захватить большие высоты, чтобы рассмотреть вопрос о так называемых двух законах рекомбинации.
Дело в том, что уже на заре ионосферных исследований обнаружили странный факт. В области Е гибель электронов происходит пропорционально [е]2 (тогда в равновесных условиях q∞[e]2), а в области F2 - пропорционально [е] (соответственно q∞[e]).
Говорят, что в первом случае имеет место квадратичный закон рекомбинации
где α' как раз и есть эффективный коэффициент рекомбинации, о котором мы говорили выше. В данном случае он не должен зависеть от [е].
Второй случай представляет собой линейный закон рекомбинации
Чтобы перейти к нему от предыдущей формулы, надо предположить, что α' сам зависит от
где β - линейный коэффициент рекомбинации, который уже от [е] не зависит.
Фотохимическая теория полностью объясняет наблюдаемое изменение закона рекомбинации в ионосфере с высотой. Впервые это объяснение дал английский ученый Ратклифф, исходя из концепции двух типов процессов: ионно-молекулярных реакций и диссоциативной рекомбинации. Он показал, что на малых высотах, где велика плотность нейтральных частиц и доля молекулярных ионов, гибель электронов определяется именно диссоциативной рекомбинацией, и величина α' просто равна константе диссоциативной рекомбинации α* (или средневзвешенному значению, если есть несколько ионов с разными αi*).
Когда количество нейтральных частиц становится мало и мала доля молекулярных ионов (как это имеет место в области F2), ионно-молекулярные реакции оказываются тем узким местом, которое тормозит рекомбинационный процесс и тем самым определяет величину коэффициента рекомбинации. В этом случае β будет равен γ[M] и в условиях фотохимического равновесия
Следует подчеркнуть, что мы говорим здесь об условиях фотохимического равновесия в области F2 и о выражении q = β[e] лишь, следуя Ратклиффу, в целях наглядности. На самом деле в уравнении баланса заряженных частиц в области F2 и выше всегда должен присутствовать член, описывающий динамику переноса этих частиц. Но это уже тема другого параграфа...
Когда зашло солнце