Читаем Популярная аэрономия полностью

Вторая важная особенность ионно-молекулярных реакций состоит в том, что слева всегда стоит ион с большим потенциалом ионизации, чем справа. Это необходимо для того, чтобы реакция не требовала дополнительной энергии, т. е. была, как говорят, экзотермической. Если же это условие нарушить, то мы получим реакцию, которая для своего протекания требует подпитки энергии извне, т. е. является эндотермической. Такие процессы, как правило, идут медленно и большой роли в аэрономии не играют. Требование экзотермичности приводит к тому, что в аэрономических ионно-молекулярных реакциях чаще всего образуются ионы N0+ и O2+, редко - ионы О+ и никогда не образуются ионы N2+.

Стоит обратить внимание еще на одну характерную деталь. Из четырех процессов, которые мы выбрали для примера, два содержат в правой части атомы азота, а в левой - молекулы N2. Значит, ионно-молекулярные реакции кроме перераспределения ионов могут приводить и к диссоциации молекул (скажем, N2) на атомы. Для кислорода это почти несущественно, а вот для образования атомного азота... Но об этом мы поговорим в одной из следующих глав.

Нас, как всегда, в первую очередь интересует эффективность данного типа процессов, т. е. константы скорости ионно-молекулярных реакций. Нужно отметить, что разброс значений у для различных ионосферных реакций гораздо больше, чем разброс значений α*. Как мы только что видели, для константы диссоциативной рекомбинации при 300 К разница между быстро рекомбинирующим ионом окиси азота и медленно рекомбинирующим ионом N^ относительно невелика - два с небольшим раза. А в случае ионно-молекулярных реакций диапазон у при комнатной температуре достигает двух порядков величины - от 10-12 см3×с-1 до 10-10cм3×c-1.

Но важно, конечно, не это, а то, знаем ли мы эти константы достаточно надежно, чтобы использовать их для аэрономических расчетов? В целом на этот вопрос сегодня следует ответить утвердительно. После многих лет поисков, споров и ошибок мы знаем сейчас величины γ для основных ионно-молекулярных реакций и их зависимость от температуры. Как ионно-молекулярные реакции вписываются в общий цикл процессов, мы увидим в следующем параграфе, а сейчас расскажем о проблеме, показывающей, насколько сложны вопросы, связанные с ионно-молекулярными реакциями.

Есть такое понятие - "колебательная температура", или "температура колебательного возбуждения". Дело в том, что практически при любой температуре газа часть молекул этого газа будет находиться в состоянии колебательного возбуждения. С ростом температуры количество колебательно возбужденных молекул быстро растет. Однако возможна ситуация, когда температура газа не меняется, а количество (процент) колебательно возбужденных частиц растет (скажем, за счет фотохимических процессов). В этом случае рост числа возбужденных частиц можно приписать росту некоторой эффективной температуры - температуры колебательного возбуждения Тк. В самом простом случае Тк просто равна обычной (кинетической) температуре газа Тн. В остальных случаях (при наличии дополнительных источников возбуждения) Тк больше, чем Т н.

Группой американских исследователей под руководством Фергюсона, заложивших основы наших сегодняшних представлений о величинах γ, в 1969 году был получен неожиданный результат.

Колебательная температура

Оказалось, что константа самой важной ионосферной ионно-молекулярной реакции (16) зависит от колебательной температуры участвующих в ней молекул азота. Причем не просто зависит, а очень сильно зависит. При изменении Тк от 300 до 1000 К константа γ16 возрастала в 100 (!) раз.

Этот факт получил огромный резонанс среди специалистов по аэрономии. Возник вопрос о пересмотре чуть ли не всей схемы ионизационно-рекомбинационных преобразований в ионосфере. Однако до этого дело пока не дошло. При внимательном подходе выяснилось, что такой драматический эффект получается, когда сам газ остается холодным, при комнатной температуре. А при температуре, скажем, 1000 К увеличение колебательной температуры уже не ведет к росту γ16 более чем в 2 раза. А поскольку нас в ионосфере интересуют как раз температуры Тн в 1000 К и выше, эффект колебательного возбуждения не должен как будто играть такой страшной роли, как показалось сначала.

Однако проблема не снята с повестки дня. Дело в том, что для объяснения ряда эффектов в области F2 ионосферы требуется предполагать зависимость константы реакции (16) от условий. Но от каких? Все от той же колебательной температуры азота? Или, может быть, как предложили недавно, от электронной температуры, которая сильно меняется на высотах максимума F2? Ответ еще предстоит найти.

Что во что переходит или окончательная схема процессов

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука