Читаем Популярная аэрономия полностью

Это и есть основной вопрос проблемы фотохимия - динамика. Оказывается, сравнивать надо с характерными размерами изменения параметров среды. Если электрон из одного места перенесен в другое, но с теми же условиями, ничего не изменится в уравнении фотохимического равновесия. Но если он попал в условия, отличные от начальных - другая плотность нейтральных частиц, а следовательно, иная скорость ионизации, или другая концентрация положительных ионов, следовательно, другая вероятность рекомбинации,- то в этом случае условия фотохимического равновесия уже не будут выполнены, а это и будет означать, что динамика влияет на распределение заряженных частиц.

Остается понять лишь, что же это за характерные размеры, которые мы должны использовать для сравнения. В качестве таких размеров при рассмотрении вертикальных движений принимают высоту однородной атмосферы (о которой мы говорили выше) нейтрального газа Н. Таким образом, если за время т динамика (в данном случае амбиполярная диффузия) переносит электрон (или ион) на расстояние, меньшее Н, условие фотохимического равновесия сохраняется. В случае горизонтальных перемещений определить характерные размеры труднее. Обычно считается, что они составляют десятки километров и что горизонтальный перенос как таковой не влияет заметно на распределение заряженных частиц.

Таков принцип сравнения роли фотохимии и динамики. Если же взяться за конкретные цифры (чего мы здесь делать не будем), то время жизни заряженных частиц на высотах 100 - 200 км днем составит несколько десятков - сотню секунд. При реальных скоростях вертикальных (амбиполярная диффузия) и горизонтальных (дрейф) движений в верхней атмосфере эти процессы не успевают за время τ перенести ионы достаточно далеко, чтобы нарушилось фотохимическое равновесие. Именно поэтому считают, что в дневных условиях на высотах 100 - 200 км влиянием динамических процессов можно пренебрегать. Ночью, когда все концентрации заряженных частиц уменьшаются, падают и вероятности участия, скажем, электронов в реакциях рекомбинации (см. (9)) и возрастает время жизни. В этом случае некоторые процессы переноса могут оказаться существенными. Но о ночной ионосфере на высотах больше 100 км речь пойдет отдельно.

Две основные реакции

Мы возвращаемся к основному вопросу этой главы: какова судьба ионов после их образования в результате фотоионизации? Раз динамическими процессами на выбранных нами высотах можно пренебречь, следует рассмотреть фотохимические реакции. Двумя главными типами химических процессов на высотах 100 - 200 км являются (кроме фотоионизации) диссоциативная рекомбинация и ионно-молекулярные реакции. О них-то мы и поговорим, прежде чем перейти к общей картине ионных преобразований.

В книге "Химия, ионосфера и космос" подробно рассказано об истории становления взглядов на диссоциативную рекомбинацию молекулярных ионов как быстрый процесс, играющий важную роль в ионосфере Земли и планет. Понадобилось около 20 лет, чтобы от первых предположений английского ученого Бейтса о существовании и роли диссоциативной рекомбинации прийти к современным представлениям об этом процессе.

Итак, диссоциативная рекомбинация молекулярных ионов. Она записывается в виде

Формула 10

При соединении молекулярного иона XY+ с электроном, как и при всякой рекомбинации, выделяется энергия, которая ранее была затрачена на ионизацию. От того, какие есть пути уноса этой энергии, будет зависеть эффективность (константа скорости) данного типа рекомбинационных процессов. В реакциях (6) и (7) энергия уносится либо излучением (отсюда и название "радиативная рекомбинация", (6)), либо третьей частицей М (реакция тройных соударений (7)). Это малоэффективные пути уноса энергии, поэтому и эффективность процессов (6) и (7) мала.

В процессе диссоциативной рекомбинации (10) энергия рекомбинации тоже сначала идет на возбуждение. Но образующаяся молекула нестабильна: она не может удержать полученный запас энергии и распадается на составляющие ее атомы, один из которых в свою очередь может быть возбужден.

Такой путь освобождения энергии, выделяющейся при рекомбинации, более всего удобен природе - константа скорости диссоциативной рекомбинации весьма высока. Если для процесса радиативной рекомбинации (6), как мы видели, константа скорости равна 10-12 см3×с-1, то для процессов диссоциативной рекомбинации основных ионосферных ионов она составляет 10-6-10-7 см3×с-1. Разница в миллион раз и определяет ту важную роль, которую процесс диссоциативной рекомбинации играет в ионосфере как главный рекомбинационный процесс выше 100 км.

Что же мы знаем и чего не знаем сейчас о конкретных процессах диссоциативной рекомбинации?

В ионосфере нас интересует главным образом диссоциативная рекомбинация трех основных молекулярных ионов NO+, О2+ и N2+:

Формула 11

Формула 12

Формула 13

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука