В фотохимии используют известное физическое понятие "время жизни данной частицы" (иона, электрона, нейтрального атома и т.д.).
Оно обозначается обычно τ и представляет собой время, которое частица (назовем ее X) успевает просуществовать между своим рождением в одном процессе и гибелью в другом. Если под "другим" понимается любая реакция, в которой участвует наша частица X, то и т будет просто фотохимическое время жизни, или время жизни относительно фотохимических процессов. Если же под "другим" понимать какую-то конкретную реакцию, то мы получим время жизни относительно этой реакции. Когда имеется несколько реакций, в которых может участвовать данная частица, сравнение соответствующих времен жизни дает нам представление о том, какая из реакций доминирует. Та из них, время жизни относительно которой меньше, будет являться основным процессом гибели частиц X.
Поскольку мы не раз будем оперировать понятием "время жизни"' и сравнивать величину τ для разных процессов, уместно, видимо, пояснить все сказанное примером. Пусть нас интересует, во-первых, время жизни электронов днем на высоте 160 км и, во-вторых, какой из трех процессов рекомбинации -
- определяет гибель электронов на данной высоте.
Первый процесс - радиативная рекомбинация атомных ионов, второй - рекомбинация атомных ионов при тройных соударениях" (М - любая третья частица), а третий - диссоциативная рекомбинация молекулярных ионов. Пусть нам известны константы всех трех процессов и концентрации частиц:
Вероятность участия η-частицы (в нашем случае - электрона) в данной реакции равна произведению константы скорости и концентрации других участвующих частиц. Для реакций (6) - (8) это будет выглядеть следующим образом:
Ну а время жизни обратно пропорционально вероятности участия:
Оно и понятно: чем активнее частица участвует в данной реакции (чем больше г)), тем меньше время жизни, и наоборот. Подставляя теперь конкретные значения параметров, получаем:
Итак, электрону необходимо подождать 5 миллионов секунд (более 10 лет), прежде чем он сможет принять участие в реакции радиативной рекомбинации (6). Для участия в реакции (7) надо ждать еще больше - 5×1010 с. Но ждать столько ему, конечно, не придется: в среднем через 33 секунды после рождения он погибает в акте диссоциативной рекомбинации.
Вот мы и получили ответы на интересовавшие нас вопросы. " Беря наименьшую из полученных величин τ, мы имеем фотохимическое время жизни электрона в наших условиях. Оно равно 33 секундам. Сравнивая времена жизни относительно всех трех процессов, или, что то же, вероятности участия η, мы видим, что в процессах гибели электронов, безусловно, доминирует реакция диссоциативной рекомбинации. Вероятность участия электрона в этой реакции в сотни тысяч раз больше, чем вероятность участия в реакции радиативной рекомбинации или рекомбинации при тройных соударениях.
Мы знаем теперь, что такое фотохимическое время жизни. И нам легко понять, какую важную роль это понятие играет в решении вопроса о том, как взаимодействуют фотохимия и динамика. Ибо динамический процесс может действовать на частицу (перемещать ее), только пока частица живет - в течение времени τ. Следовательно, чем больше τ, тем дальше унесут частицу динамические процессы.
Вернемся к процессам (6) -(8) и рассмотрим такой пример. Пусть на нашей высоте 160 км действует горизонтальный дрейф заряженных частиц вдоль параллели со скоростью 0,1 см/с. И пусть (исключительно для примера!) не существует ни реакции (6), ни реакции (8), а гибель электронов определяется реакцией тройных соударений (7). Время жизни электрона тогда равно 5×1010 с Все это время он будет потихоньку (V = 0,1 см/с) дрейфовать вдоль параллели и отдрейфует на 5×1010×0,1 =5×109 см (!). А это половина земного шара! Ясно, что в этом случае ни о каком фотохимическом равновесии не может быть и речи, ибо в данный . момент в данном месте будут находиться электроны, родившиеся ; в разных местах, в разных условиях и в разное время. Например, не будет разницы между дневными и ночными концентрациями электронов, ибо ночью ионосфера окажется полна электронов, родившихся вчера днем и позавчера днем, и днем много лет назад...
Ну а в реальной ситуации, когда действует диссоциативная рекомбинация и время жизни равно нескольким десяткам секунд? В этом случае, очевидно, электрон за время τ переместится на несколько сантиметров. Много это или мало? Интуитивно все мы, конечно, чувствуем, что это мало и что ничего страшного от этого не произойдет. Но с чем все-таки эти сантиметры сравнивать?