По всему земному шару разбросана сеть ионосферных станций. Эти станции регулярно патрулируют состояние ионосферы - следят за отражением радиоволн различных частот от ионосферных слоев. Каждые 15 минут на каждой станции получают и фотографируют картинку-ионограмму, где видно, на каких высотах отражаются радиоволны каких частот. Богатейший материал накоплен таким образом о поведении главного ионосферного максимума в области F2 (250 - 300 км). Часто появляется на ионограммах слой F1 (180 - 200 км), днем хорошо видна ионизация в области Е (100 - 120 км), в виде яркого следа проявляется узкий спорадический слой Es (≈105 - 110 км). А вот область D вновь оказывается не охваченной этим методом исследования. На ионограммах ей нет места: радиоволны, испущенные ионосферной станцией, не отражаются от области D. Правда, нельзя сказать, что оператор на ионосферной станции совсем не видит этой области. Время от времени она проявляется, но в негативном плане. Некоторые частоты исчезают с ионограммы. Они застряли по дороге от станции к отражающим слоям и обратно - частично или полностью поглотились на высотах до 100 км. Эффект D-области налицо. Но говорит ли это нам что-нибудь о структуре самой D-области? К сожалению, очень мало. При вертикальном ионосферном зондировании (так называется описанный выше метод), как и в других случаях, когда измеряется интегральный (суммарный) эффект прохождения радиоволн через D-область, очень трудно перейти от этого интегрального эффекта к реальному распределению концентраций электронов (а именно они определяют поглощение радиоволн) по высоте и к абсолютным значениям этих концентраций. Ведь нам, во-первых, ничего неизвестно, как распределено само поглощение с высотой, а во-вторых, это поглощение зависит не только от концентрации электронов, но и от того, сколь часто они сталкиваются с нейтральными частицами, т. е. от частоты соударений. А этот параметр порождает в D-области уже свои проблемы, обсуждение которых увело бы нас далеко в сторону. Отметим лишь грустный факт, что и вертикальное зондирование не дает желаемых сведений о строении ионосферы на высотах 50 - 90 км.
В предыдущих главах мы уже видели, как важно знать ионный состав ионосферы на разных уровнях и как много дали масс-спектрометрические измерения этого состава в Е- и F-области. Ну а что же в D-области? Та же картина. Различные типы масс-спектрометров, успешно применяемые выше 100 км, ниже работать не могут. Они "захлебываются" в плотной нейтральной среде и либо совсем выходят из строя, либо отказываются измерять нужные параметры.
Чтобы спасти положение, придумали, как "обмануть" масс-спектрометры и заставить их работать на малых высотах. Перед анализатором прибора стали помещать камеру с вакуумным насосом. Насос непрерывно откачивает воздух, поступающий из атмосферы, окружающей ракету, и создает в камере пониженное давление, которое масс-спектрометр способен "пережить". Прибор работает и дает сведения об относительном содержании различных ионов в окружающем газе, но, естественно, не об их абсолютном количестве.
Ясно, что описанная процедура делает масс-спектрометрические эксперименты на малых высотах значительно более сложными и громоздкими, чем на высотах Е- и F-области. Именно поэтому активное исследование ионного состава D-области задержалось по сравнению с более высокими областями почти на 10 лет.
Но это еще не все. Специфика самого ионного состава области D вносит дополнительные трудности в процесс его измерений. Сложные положительные ионы-связки, играющие, как выяснилось, большую роль в физике D-области, очень неустойчивы. Образно говоря, они могут развалиться от малейшего прикосновения. А ведь прикосновение ракеты, налетающей на неподвижный газ со скоростью 1 км в секунду, трудно назвать "малейшим". Возникла опасность, что те ионы, которые масс-спектрометр измеряет в нижних слоях,- не что иное, как жалкие осколки значительно более сложных (и соответственно более громоздких и неустойчивых) ионов-связок, реально существующих в атмосфере и распадающихся при встрече с прибором под действием различных факторов (ударная волна движущейся раке ты, электрическое поле прибора и т. д.). Значит, одной лишь откачной системы мало - нужны еще специальные ухищрения, чтобы избавиться от разрушения сложных ионов.
А отрицательные ионы. Ведь проблемы их измерения не стояло при исследованиях состава ионосферы выше 100 км. Значит, здесь для масс-спектрометристов вообще "terra incognita". Да плюс те же самые трудности с возможным распадом сложных отрицательных ионов-связок на более простые в самом процессе измерений.
Нужно ли, учитывая все это, удивляться, что в области D мы далеки от того положения с исследованием ионного состава, которое имеется в других ионосферных областях.