Вторая особенность области F2 - так называемая зимняя аномалия (не путать с зимней аномалией поглощения радиоволн в области D). Она состоит в том, что дневная электронная концентрация в максимуме слоя F2 зимой выше, чем летом. На первый взгляд, это явно противоречит здравому смыслу. Ведь летом больше время облучения атмосферы солнечным излучением, вызывающим ионизацию, значит, должна бы быть больше (а уж никак не меньше!) и концентрация заряженных частиц. Такое поведение [е] в области F2 выглядело настолько странным, что его назвали летне-зимней аномалией. Так сказать, явное отклонение от кажущегося здравого смысла. Известно при этом, что высота максимума слоя F2 зимой меньше (на 20 - 30 км), чем летом.
С самого начала исследований зимней аномалии в области F2 ее пытаются связать с изменением отношения атомных и молекулярных компонент [О]/[N2]. Наиболее простое объяснение состоит в том, что зимой (когда освещенность Солнцем меньше) температуры атмосферы ниже и, следовательно, по законам диффузионного разделения, выше отношение [О]/[N2]. А электронная концентрация, как мы уже говорили, пропорциональна этому отношению.
Выяснилось, что есть еще один фактор, который изменяет равновесную концентрацию электронов при изменении температуры в нужную нам сторону. Этот фактор - константа γ ионно-молекулярной реакции O+ + N2, которая в значительной мере определяет величину коэффициента β. При уменьшении Tн от лета к зиме будет уменьшаться величина γ, а значит, и β, что приведет к росту равновесной концентрации электронов зимой по сравнению с летом при тех же величинах g.
Небольшое увеличение высоты максимума hM летом по сравнению с зимой тоже легко объясняется в рамках описанной картины. Ведь летом выше р (как за счет роста количества молекул, так и за счет прямого влияния Tн на константу , а следовательно, нижняя часть слоя активнее уничтожается рекомбинацией и максимум перемещается вверх.
Известно, что сезонная аномалия по-разному проявляется на разных широтах и в годы различной активности Солнца. В высоких широтах и в годы максимума активности наблюдается наибольший рост [е] от лета к зиме. В период солнечного минимума и на низких широтах эффект зимней аномалии, как правило, мал. Эти особенности явления объясняют разным характером вариаций параметров все той же нейтральной атмосферы. Из измерений нейтрального состава известно, что амплитуда сезонных вариаций температуры (а следовательно, и концентраций О и N2) как раз растет с увеличением широты места и солнечной активности. На низких широтах при минимуме активности эти вариации малы и могут перекрываться полугодовыми вариациями состава, о которых мы рассказывали в главе 2.
В самое последнее время благодаря спутниковым измерениям нейтрального состава удалось пролить свет на третью важную особенность поведения области F2. Речь идет о так называемых отрицательных ионосферных возмущениях. Известно, что во время (или чуть позже) магнитной бури уменьшаются критические частоты слоя F2, т. е. уменьшается электронная концентрация. Это обычно выражено тем сильнее, чем сильнее буря и чем на более высоких широтах расположена ионосферная станция (на станциях в приэкваториальной зоне отрицательных возмущений не видят никогда). Иногда, однако, возмущение проявляется на среднеширотных станциях, тогда как в высоких широтах ионосфера остается спокойной.
Причину отрицательных возмущений также связывают все с тем же пресловутым отношением [O]/[N2]. Однако объяснить, почему во время магнитной бури уменьшается это отношение (напомним, в области F2 [e]∞[0]/[N2]) на средних широтах, не так просто. Известно, что во время возмущений магнитного поля Земли энергичные частицы из магнитосферы и околоземного космического пространства проникают в верхнюю атмосферу высоких широт, вызывая там целый ряд явлений, от полярных сияний до полного нарушения коротковолновой радиосвязи. При этом в полярной зоне происходит разогрев верхней атмосферы на высотах, больших 120-150 км.
Указанный разогрев может быть причиной того, что во время магнитного возмущения уменьшается отношение [O]/[N2] и соответственно падают равновесные величины [е] в полярной области. Но как объяснить при этом падение (хотя и в меньшей мере) электронной концентрации на средних широтах?
Нагретый в полярной области атмосферный газ может переноситься на более низкие широты в результате так называемой меридиональной циркуляции (т. е. переноса газа на той же высоте вдоль меридиана от полюсов к экватору). При этом газ будет остывать и отношение [O]/[N2] будет возрастать до своего нормального значения. Такая модель качественно объясняет обычное уменьшение амплитуды отрицательного возмущения с уменьшением широты.