Читаем Популярная аэрономия полностью

Вот в этом-то и состоит суть современной проблемы ночной ионизации. Мы получаем все больше убедительных аэрономических доказательств роли корпускул в ночной области Е на средних широтах, но еще не имеем ни непреложного экспериментального доказательства существования необходимых корпускулярных потоков, ни теоретического объяснения их природы.

А в остальном, как говорится, все вполне ясно.

Борьба динамики и фотохимии

Мы поговорили подробно об ионосфере на высотах 100 - 200 км. Теперь поднимемся выше, в область F2, где расположен главный максимум распределения электронной концентрации. Существование этого максимума известно давно; именно он лучше всего наблюдается с наземных ионосферных станций. Но вот как и почему он образуется? Для ответа на этот вопрос уже недостаточно всего, что мы знаем о фотохимии (т. е. о скорости ионизации и рекомбинации) заряженных частиц. Необходимо рассматривать их перераспределение в результате динамических процессов. Попробуем понять, почему это необходимо.

На высотах слоя F2 уравнение фотохимического равновесия для электронной концентрации записывается в виде (26):

Равновесие для электронной концентрации

где β - линейный эффективный коэффициент рекомбинации.

Он определяется скоростью трансформации атомных ионов О+ и N+, которые образуются в результате ионизации атомов О и молекул N2 - основных нейтральных частиц на этих высотах,- в молекулярные, рекомбинирующие с электронами по реакциям диссоциативной рекомбинации. Трансформация эта происходит при участии нейтральных молекул N2 и О2 в основном по реакциям:

Формула 30

Значит, коэффициент р прямо пропорционален концентрациям молекулярных составляющих атмосферы. А скорость ионизации g? Величина g определяется количеством нейтральных атомов, поскольку они являются основной ионизуемой компонентой на рассматриваемых высотах. Что же получается? Концентрация электронов, согласно формуле (26), прямо пропорциональна концентрации атомов и обратно пропорциональна концентрации молекул, т. е. грубо говоря, [е]∞[A]/[М]. Поскольку основными нейтральными атомами в области F2 являются атомы кислорода, а основными молекулами - молекулы азота, пишут более конкретно: [e]∞[О]/[N2]. Отметим себе, это простое соотношение - сегодня его рассматривают как ключ к решению многих проблем F - области. А сейчас вернемся к основному вопросу, почему фотохимия одна не в силах объяснить существование области F2.

Поскольку молекулы - более тяжелые частицы, чем атомы, их концентрация выше примерно 120 км (уровня диффузионного разделения) уменьшается с высотой быстрее, чем концентрация атомов. Более тяжелые молекулы как бы тонут в атмосфере более легких атомов. Последнее означает, что отношение [0]/[N2] будет все время расти с высотой, а следовательно, должна возрастать и концентрация электронов. Пока мы поднимаемся от 200 к 300 км нас это устраивает. Наша теория объясняет рост [е] ниже максимума слоя F2. Двигаемся выше. И тут - стоп! Выше что-то не то. Мы проходим максимум слоя. А откуда, собственно, слой? По фотохимической теории, должен продолжаться рост концентрации электронов, а в реальной атмосфере начинается уменьшение [е] с высотой. В чем же дело? Видимо, мы пришли к верхней границе применимости фотохимической теории. И действительно, выше максимума слоя F2 уравнение (26) уже неприменимо, так как не учитывается процесс, который на этих высотах начинает играть существенную роль. Этот процесс - амбиполярная диффузия заряженных частиц. Теперь мы должны ввести в уравнение (26) новый член, определяющий изменение концентрации электронов за счет вертикального переноса путем диффузии:

Формула 31

Возникает вопрос, почему мы не рассматривали процесс диффузии раньше, когда говорили об ионосфере ниже 200 км. Ответ на него связан с уже встречавшимся на страницах этой книги понятием "время жизни".

На высоте, скажем, 150 км фотохимическое время жизни электрона довольно мало (днем -10 с), а время жизни относительно диффузии велико (десятки минут). За те секунды, что электрон "живет", диффузия просто не успевает переместить его на какое-нибудь существенное расстояние. В уравнении (31) это будет означать, что член со мал по сравнению с двумя остальными и им можно пренебречь. Так и получается уравнение фотохимического равновесия (26).

Но скорость процессов диффузии очень сильно зависит от плотности нейтральных частиц в атмосфере. Чем выше эта плотность, тем меньше скорость диффузии. Двигаясь от 150 км вверх, мы обнаруживаем, что скорость диффузии быстро растет (так как падает плотность газа) и соответственно диффузионное время жизни электронов падает. Время жизни относительно фотохимии растет с высотой, поэтому наступает момент (т. е. высота), когда эти времена сравниваются. Выше полностью царит амбиполярная диффузия.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука